Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Fest wie Stahl und formbar wie Kunststoff: Metallische Massivgläser

01.04.2011
Metallschmelzen, die beim Abkühlen nicht kristallisieren, sondern zu metallischem Glas erstarren, haben faszinierende Eigenschaften als Werkstoffe: Sie sind fest wie Stahl, dabei hoch elastisch und formbar wie Kunststoffe.

Ralf Busch, Professor für metallische Werkstoffe an der Saar-Universität, und sein Team experimentieren mit unterschiedlichen Metall-Legierungen, um Werkstoffe mit idealen Eigenschaften zu entwickeln. Die Materialklasse der metallischen Gläser sowie erste technologische Anwendungen stellen die Werkstoffwissenschaftler vom 4. bis zum 8. April auf dem saarländischen Forschungsstand der Hannover Messe vor.

Glas gehört zu den ältesten Werkstoffen der Menschheit. Schon vor mehr als drei Jahrtausenden wurde es aus geschmolzenen Quarz (Siliziumdioxid) und anderen Zusätzen hergestellt. Dabei nutzte man ein Verfahren, das auch heute noch aktuell ist: Beim Abkühlen wird die Silikatschmelze immer zähflüssiger, sodass sie sich formen und beispielsweise zu Flaschen blasen lässt. Bei weiterer Abkühlung „gefriert“ die viskose Masse zu Quarzglas.

„Als Glas bezeichnet man eingefrorene Flüssigkeiten“, erklärt Ralf Busch, Professor für metallische Werkstoffe an der Universität des Saarlandes. „Kühlt beispielsweise Silikatschmelze normal ab, dann entsteht Glas. Im Glas liegen die Atome amorph, also ungeordnet, vor. Bei sehr langsamer Abkühlung wird die Schmelze dagegen zu Quarzkristall, in dem sich die Bausteine zu einem regelmäßigen Gitter angeordnet haben“, erläutert der Forscher.

Glas lässt sich nicht nur aus Quarz herstellen, sondern auch aus einer ganz anderen Gruppe von Werkstoffen: aus Metallen. Metallschmelzen, die beim Abkühlen nicht kristallisieren, sondern zu einem Glas einfrieren, sind das Spezialgebiet des Saarbrücker Werkstoffwissenschaftlers. „Schon vor fünfzig Jahren konnte man solche metallischen Gläser herstellen, die faszinierende Werkstoffeigenschaften hatten“, sagt Ralf Busch. „Dabei musste man allerdings die Metallschmelzen extrem hohen Abkühlraten von bis zu einer Million Grad pro Sekunde unterziehen.“ Man habe daher nur hauchdünne Folien aus den amorphen Metallen herstellen können, wie sie beispielsweise für Magnetstreifen in Diebstahlsicherungen in Kaufhäusern verwendet werden.

Später stießen Forscher auf Metallschmelzen, die für die Glasbildung besser geeignet waren: Sie fanden heraus, dass Mischungen aus großen und kleinen Metallatomen zähflüssig sind und viel langsamer kristallisieren. Daher musste man die Legierungsschmelze nicht mehr so schnell abkühlen, um metallisches Glas zu bilden. „Auf diese Weise lassen sich bis zu mehrere Zentimeter dicke metallische Massivgläser herstellen, die sich nun als Konstruktionswerkstoffe eignen“, sagt Professor Busch und erläutert die besonderen Eigenschaften dieser Materialien: „Das Material ist so fest wie hochfester Stahl und gleichzeitig äußerst elastisch. Es ist deshalb der beste bekannte Federwerkstoff.“ Die metallischen Schmelzen können im Prinzip genau so verarbeitet werden wie herkömmliches Silikatschmelzen oder auch wie Kunststoffe. Sie lassen sich beispielsweise zu Metallflaschen aufblasen. Ein weiterer Vorteil: Die Schmelze schrumpft nicht, wenn sich aus ihr ein Glas bildet. Anders als bei einer Kristallisation, bei der das Material Volumen einbüßt, kann man metallische Schmelzen in die Endform gießen, ohne dass eine Nachbearbeitung nötig wird.

Ralf Busch forscht mit seiner Arbeitsgruppe an der optimalen Zusammensetzung metallischer Legierungen, die einen besonders niedrigen Schmelzpunkt haben und beim Abkühlen nur zögernd kristallisieren. Solche Legierungen enthalten drei bis fünf Elemente des Periodensystems, beispielsweise Aluminium, Titan, Kupfer oder Nickel, berichtet er. Im Hinblick auf die technologische Umsetzung haben die Saarbrücker Wissenschaftler besonders mit Zirkon-Basislegierungen viel Erfahrung gesammelt. Bereits realisiert ist beispielsweise das Prinzip des Spritzgießens metallischer Massivgläser, das die Forscher auf der Hannover Messe vorstellen werden. Dabei arbeiten sie mit einem mittelständischen Feinguss-Unternehmen zusammen. Dieses Projekt wurde in den vergangenen zwei Jahren mit insgesamt 200.000 Euro vom Bundesministerium für Wirtschaft und Technologie (BMWi) unterstützt. „Bei dem neuen Verfahren wird das Metall wie ein Kunststoff direkt in die Dauerform gespritzt, was das sehr aufwändige Verfahren des ‚Gießens in verlorene Formen’ ersetzt“, erläutert Ralf Busch. Und: „Beim Spritzgießen kann man sehr komplexe Strukturen formen, die nicht mehr nachbearbeitet werden müssen.“

Das „Upscaling“ dieser neuen Technologie über den Labormaßstab hinaus wollen Busch und sein Team mit einem neuen Saarbrücker Steinbeis-Zentrum für amorphe Metalle realisieren. Ziel des Zentrums wird es sein, die Technologie zur Herstellung und Verarbeitung der metallischen Gläser der Industrie verfügbar zu machen.

Pressefotos unter: http://www.uni-saarland.de/pressefotos

Fragen beantwortet:
Prof. Dr. Ralf Busch
Lehrstuhl für metallische Werkstoffe
Tel. 0681 302-3208
E-Mail. r.busch@mx.uni-saarland.de
Hinweis für Hörfunk-Journalisten: Sie können Telefoninterviews in Studioqualität mit Wissenschaftlern der Universität des Saarlandes führen, über Rundfunk-ISDN-Codec. Interviewwünsche bitte an die Pressestelle (0681/302-3610) richten.

Gerhild Sieber | idw
Weitere Informationen:
http://www.uni-saarland.de/fak8/lmw/

Weitere Nachrichten aus der Kategorie HANNOVER MESSE:

nachricht Rittal mit neuer Push-in-Leiteranschlussklemme - Kontakte im Handumdrehen
26.04.2017 | Rittal GmbH & Co. KG

nachricht Neuer Blue e+ Chiller von Rittal - Exakt regeln und effizient kühlen
25.04.2017 | Rittal GmbH & Co. KG

Alle Nachrichten aus der Kategorie: HANNOVER MESSE >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schnelles und umweltschonendes Laserstrukturieren von Werkzeugen zur Folienherstellung

Kosteneffizienz und hohe Produktivität ohne dabei die Umwelt zu belasten: Im EU-Projekt »PoLaRoll« entwickelt das Fraunhofer-Institut für Produktionstechnologie IPT aus Aachen gemeinsam mit dem Oberhausener Fraunhofer-Institut für Umwelt-, Sicherheit- und Energietechnik UMSICHT und sechs Industriepartnern ein Modul zur direkten Laser-Mikrostrukturierung in einem Rolle-zu-Rolle-Verfahren. Ziel ist es, mit Hilfe dieses Systems eine siebartige Metallfolie als Demonstrator zu fertigen, die zum Sonnenschutz von Glasfassaden verwendet wird: Durch ihre besondere Geometrie wird die Sonneneinstrahlung reduziert, woraus sich ein verminderter Energieaufwand für Kühlung und Belüftung ergibt.

Das Fraunhofer IPT ist im Projekt »PoLaRoll« für die Prozessentwicklung der Laserstrukturierung sowie für die Mess- und Systemtechnik zuständig. Von den...

Im Focus: Das Auto lernt vorauszudenken

Ein neues Christian Doppler Labor an der TU Wien beschäftigt sich mit der Regelung und Überwachung von Antriebssystemen – mit Unterstützung des Wissenschaftsministeriums und von AVL List.

Wer ein Auto fährt, trifft ständig Entscheidungen: Man gibt Gas, bremst und dreht am Lenkrad. Doch zusätzlich muss auch das Fahrzeug selbst ununterbrochen...

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Marine Pilze – hervorragende Quellen für neue marine Wirkstoffe?

28.06.2017 | Veranstaltungen

Willkommen an Bord!

28.06.2017 | Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine