Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Magnetooptik auf der Hannover Messe

28.03.2006


Augsburger Materialwissenschaftler präsentieren vom 24. bis 28. April magnetooptische Dünnschicht- und Oberflächentechnik

Wie verteilen sich Magnetfelder und Stromflüsse in elektrischen Bauteilen? Dieser Frage geht ein junges Team von Materialwissenschaftlern des Lehrstuhls Experimentalphysik IV der Universität Augsburg nach. Dazu entwickeln die Forscher so genannte magnetooptische Sensoren, die mit Hilfe von Licht Magnetfelder sichtbar machen. Diese vielversprechende Technik und mögliche zukünftige Anwendungen präsentieren die Augsburger Physiker zusammen mit dem Anwenderzentrum Material- und Umweltforschung (AMU) der Universität Augsburg, der Firma Carl Zeiss AG und der Firma AXYNTEC Dünnschichttechnik GmbH vom 24. bis 28. April auf der Hannover Messe am Messestand von BayernInnovativ (Halle 2, Stand A54).

Die Forschungsarbeiten am Lehrstuhl für Experimentalphysik IV der Universität Augsburg konzentrieren sich vor allem auf die Entwicklung innovativer dünner Schichtsysteme. Mit diesen Schichtsystemen sollen neue funktionelle Materialien entwickelt werden, die zum Beispiel für die Fehleranalyse von Hochleistungs-Halbleitern dienen können. Ebenso könnten die Schichtsysteme als optische Isolatoren in integrierten Optiken Anwendungen finden. Zudem dienen sie zur Klärung grundlegender physikalischer Fragestellungen wie etwa der des Stromtransports in Hochtemperatur-Supraleitern für Elektromotoren. Die neu entwickelten magnetooptisch aktiven Granatschichten werden von den Forschern auf ihre strukturellen, morphologischen und optischen Eigenschaften sowie auf ihre elektrischen Transport-Eigenschaften hin untersucht.



Für ihre Untersuchungen der bis zu einigen Mikrometern dicken Schichten bedienen sich die Augsburger Physiker magnetooptischer Verfahren. Generell beschreibt die Magnetooptik die Wechselwirkung zwischen Licht und magnetisierter Materie. Wenn polarisiertes Licht, also Licht, dessen Amplitude noch eine Richtung hat, magnetooptisch aktive Materie durchstrahlt, dann ändert sich seine Polarisationsrichtung. Das geschieht in Abhängigkeit von der Wellenlänge, dem angelegten Magnetfeld und der Schichtdicke. Anschließend passiert das Licht einen Analysator und wird z. B. über eine Digitalkamera detektiert. Man erhält so eine zweidimensionale Aufnahme der Helligkeitsverteilung, die ein Maß für die lokale Magnetfeldverteilung ist und damit zur Qualitätsanalyse der Materialien dient.

Die Analyse solcher Magnetfeldverteilungen ist in vielen Bereichen der Elektronik und Festkörperphysik von essentieller Bedeutung. Ein hohes Potenzial der magnetooptischen Analyse sehen Experten in der Fehleranalyse von integrierten Hochleistungs-Halbleiterschaltungen mit hohen Strömen.

In der Regel werden solche Analysen bisher mit Hilfe der Flüssigkristallthermographie verhältnismäßig aufwändig durchgeführt. Dazu muss ein Flüssigkristall auf die Halbleiterstruktur aufgebracht werden. Anschließend wird das Bauteil elektrisch kontaktiert und mit Strom belastet. Die dadurch bedingte Wärmeentwicklung bewirkt einen Umschlag des Flüssigkristalls am Klärpunkt. Der Klärpunkt bezeichnet dabei den Punkt, an dem im Flüssigkristall eine Phasenumwandlung stattfindet. Der zunächst durchsichtige Flüssigkristall erscheint nun im Polarisationsmikroskop schwarz. Auf diese Weise ist eine Detektion von fehlerhaften und damit stark Wärme entwickelnden Bereichen möglich.

Einfacher und schneller als diese relativ aufwändige Methode wäre die magnetooptische Aufnahme mit Hilfe eines Mikroskops, wie es die Augsburger Materialwissenschaftler zur Zeit entwickeln. Um die Magnetfeld- oder Stromverteilungen, zum Beispiel in elektrischen Bauteilen, in Zukunft viel kostengünstiger und einfacher als bisher, sichtbar zu machen, werden im Rahmen des neuen großen Forschungsverbundes FOROXID in Augsburg nun magnetooptische Sensoren hergestellt. Innerhalb der Laufzeit des Verbundes sollen die Produkte Serienreife erlangen. Diese magnetooptischen Sensoren basieren auf so genannten Eisen-Granat-Schichten, die auf geeigneten Substraten, wie zum Beispiel Silizium oder Quarzglas mittels der gepulsten Laserablation aufgebracht werden. Zur Untersuchung der deponierten Schichten stehen verschiedenste Messmethoden zur Verfügung, z. B. Transmissionselektronenmikroskopie (TEM), Rutherford-Rückstreu-Analyse (RBS), Röntgendiffraktometrie (XRD), Oberflächen-Profilometer (Dektak), Magnetooptik und Sekundärionenmassensprektroskopie (SIMS).

Auf der Hannover Messe werden die Augsburger Physiker nun einen von ihnen bereits entwickelten magnetooptischen Sensor vorstellen, mit dessen Hilfe man optische Aufnahmen eines Bauteils direkt mit Magnetfeldverteilungen korrelieren kann.

KOOPERATIONEN

Im Forschungsverbund FOROXID kooperieren die Augsburger Wissenschaftler mit dem Anwenderzentrum Material- und Umweltforschung (AMU) der Universität Augsburg. Die Experten des AMU erschließen für die Industrieunternehmen die Kompetenz und das technologische Potenzial des Instituts für Physik. Die Angebotspalette des AMU umfasst dabei sowohl physikalisch/chemische Materialanalysen und -präparationen als auch Projektpartnerschaften im materialwissenschaftlichen Bereich und Consulting.

Zudem besteht eine Kooperation mit der Firma AXYNTEC Dünnschichttechnik GmbH. Das Unternehmen ist ein Spin-off des Instituts für Physik der Universität Augsburg. Es bietet auf der Basis innovativer Beschichtungstechnologien alles aus einer Hand - von der Entwicklung über die Beschichtung bis hin zu Anlagensystemen inklusive der Prozesstechnik. Ein Schwerpunkt liegt dabei im Bereich von Verschleißschutzschichten für Anwendungen im Automobil- und Maschinenbau sowie in der Medizintechnik. Zusammen mit AXYNTEC werden für die magnetooptischen Sensoren spezielle verschleißarme Spiegelschichten im Rahmen des Projekts entwickelt.

Mit der Carl Zeiss AG in Göttingen, einem der Weltmarktführer im Bereich der optischen Mikroskopie, soll die wirtschaftliche Umsetzung der Integration der Sensoren in ein kommerzielles Objektivsystem erfolgen.

Ein weiterer Kooperationspartner ist die Firma OWIS GmbH Staufen, mit deren Hilfe verschiedene optische Anlagen konzipiert wurden. So wurde zum einen ein optischer Aufbau zur Mikrostrukturierung von Zahnimplantaten mittels Laser realisiert, zum anderen wurde ein Messplatz zur Bestimmung der Faraday Rotation von magnetooptisch aktiven Materialien aufgebaut.

Ein derartiger Messaufbau zur Bestimmung der magnetooptischen Eigenschaften, sowie ein Magnetooptischer Demonstrator werden auf der Hannover Messe 2006 präsentiert, mit dem Ziel, den Technologietransfer zwischen Universität und Industriefirmen zu fördern und diese neuartigen Entwicklungen für weitere Anwendungen zu erschließen.

Standort: Hannover Messe, vom 24. bis 28. April, Halle 2, Stand A54
Partner bei: Gemeinschaftsstand BayernInnovativ

KONTAKT UND WEITERE INFORMATIONEN:
Timo Körner
Lehrstuhl für Experimentalphysik IV
Universität Augsburg
86135 Augsburg
Tel: +49(0)821/598-3417
Fax: +49(0)821/598-3425
timo.koerner@physik.uni-augsburg.de

Weitere Informationen:
http://www.physik.uni-augsburg.de/exp4
http://www.amu-augsburg.de
http://www.axyntec.de
http://www.zeiss.de
http://www.owis-staufen.de
http://www.bayern-innovativ.de

Klaus P. Prem | idw
Weitere Informationen:
http://www.uni-augsburg.de/

Weitere Nachrichten aus der Kategorie HANNOVER MESSE:

nachricht Hannover Messe Preview 2017: Industrie 4.0: Virtueller Zwilling steuert die Produktion
09.02.2017 | Fraunhofer-Gesellschaft

nachricht Hannover Messe Preview 2017: Bauteil mit Verantwortung
09.02.2017 | Fraunhofer-Gesellschaft

Alle Nachrichten aus der Kategorie: HANNOVER MESSE >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Im Focus: Innovative Antikörper für die Tumortherapie

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig von diesen teuren Medikamenten profitieren, wird intensiv an deren Verbesserung gearbeitet. Forschern um Prof. Thomas Valerius an der Christian Albrechts Universität Kiel gelang es nun, innovative Antikörper mit verbesserter Wirkung zu entwickeln.

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2017

23.02.2017 | Veranstaltungen

Wie werden wir gesund alt? - Alternsforscher tagen auf interdisziplinärem Symposium in Magdeburg

23.02.2017 | Veranstaltungen

Luftfahrt der Zukunft

23.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Planeten außerhalb unseres Sonnensystems: Bayreuther Forscher dringen tief ins Weltall vor

23.02.2017 | Physik Astronomie

Tausende Holztäfelchen simulieren Plastikmüll

23.02.2017 | Ökologie Umwelt- Naturschutz

Neuer Mechanismus der Gen-Inaktivierung könnte vor Altern und Krebs schützen

23.02.2017 | Biowissenschaften Chemie