Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Artificial hand able to respond sensitively thanks to muscles made from smart metal wires

24.03.2015

Engineers at Saarland University have taken a leaf out of nature’s book by equipping an artificial hand with muscles made from shape-memory wire. The new technology enables the fabrication of flexible and lightweight robot hands for industrial applications and novel prosthetic devices. The muscle fibres are composed of bundles of ultrafine nickel-titanium alloy wires that are able to tense and flex. The material itself has sensory properties allowing the artificial hand to perform extremely precise movements. The research group led by Professor Stefan Seelecke will be showcasing their prototype artificial hand and how it makes use of shape-memory ‘metal muscles’ at HANNOVER MESSE.

HANNOVER MESSE 2015 – the world’s largest industrial fair – from April 13th to April 17th. The team, who will be exhibiting at the Saarland Research and Innovation Stand in Hall 2, Stand B 46, are looking for development partners.


Filomena Simone, an engineer in the research team led by Professor Stefan Seelecke, is working on the prototype of the artificial hand.

Credit: Oliver Dietze

The hand is the perfect tool. Developed over millions of years, its ‘design’ can certainly be said to be mature. The hand is extraordinarily mobile and adaptable, and the consummate interaction between the muscles, ligaments, tendons, bones and nerves has long driven a desire to create a flexible tool based upon it.

The research team led by Professor Stefan Seelecke from Saarland University and the Center for Mechatronics and Automation Technology (ZeMA) is using a new technology based on the shape memory properties of nickel-titanium alloy. The engineers have provided the artificial hand with muscles that are made up from very fine wires whose diameter is similar to that of a human hair and that can contract and relax.

‘Shape-memory alloy (SMA) wires offer significant advantages over other techniques,’ says Stefan Seelecke. Up until now, artificial hands, such as those used in industrial production lines, have relied on a lot of complex background technology. As a result they are dependent on other devices and equipment, such as electric motors or pneumatics, they tend to be heavy, relatively inflexible, at times loud, and also expensive.

‘In contrast, tools fabricated with artificial muscles from SMA wire can do without additional equipment, making them light, flexible and highly adaptable. They operate silently and are relatively cheap to produce. And these wires have the highest energy density of all known drive mechanisms, which enables them to perform powerful movements in restricted spaces,’ explains Seelecke. The term ‘shape memory’ refers to the fact that the wire is able to ‘remember’ its shape and to return to that original predetermined shape after it has been deformed.

‘This property of nickel-titanium alloy is a result of phase changes that occur within the material. If the wire becomes warm, which happens, for instance, when it conducts electricity, the material transforms its lattice structure causing it to contract like a muscle,’ says Seelecke.

The engineers use ‘smart’ wires to play the role of muscles in the artificial hand. Multiple strands of shape-memory wire connect the finger joints and act as flexor muscles on the front-side of the finger and as extensor muscles on the rear. In order to facilitate rapid movements, the engineers copied the structure of natural human muscles by grouping the very fine wires into bundles to mimic muscle fibres.

These bundles of wires are as fine as a thread of cotton, but have the tensile strength of a thick wire. ‘The bundle can rapidly contract and relax while exerting a high tensile force,’ explains Filomena Simone, an engineer who is working on the prototype of the artificial hand as part of her doctoral research.

‘The reason for this behaviour is the rapid cooling that is possible because lots of individual wires present a greater surface area through which heat can be dissipated. Unlike a single thick wire, a bundle of very fine wires can undergo rapid contractions and extensions equivalent to those observed in human muscles. As a result, we are able to achieve fast and smooth finger movements,’ she explains.

Another effect of using the shape-memory metal wires is that the hand can respond in a natural manner when someone intervenes while a particular movement is being carried out. This means that humans can literally work hand-in-hand with the prototype device. A semiconductor chip controls the relative motions of the SMA wires allowing precise movements to be carried out.

And the system does not need sensors. ‘The material from which wires are made has sensor properties. The controller unit is able to interpret electric resistance measurement data so that it knows the exact position of the wires at any one time,’ says Seelecke. This enables the hand and the fingers to be moved with high precision.

The research team will be exhibiting their system prototypes at HANNOVER MESSE 2015 and showcasing the potential of the technology by performing hand grasps and the controlled movement of individual fingers. The researchers want to continue developing the prototype and improve the way in which it simulates the human hand. This will involve modelling hand movement patterns and exploiting the sensor properties of SMA wire.


Contact:
Professor Stefan Seelecke (Multifunctional Materials and Systems Lab),
Tel. +49 (0)681 302-71341; E-mail: stefan.seelecke@mmsl.uni-saarland.de
http://www.mmsl.uni-saarland.de/
Benedikt Holz, Tel.: +49 (0)681 302-71345, E-mail: benedikt.holz@mmsl.uni-saarland.de
Filomena Simone, Tel.: +49 (0)681 302-71347 E-mail: filomena.simone@mmsl.uni-saarland.de

During HANNOVER MESSE 2015, the Saarland Research and Innovation Stand can be contacted at Tel.: +49 (0)681 302-68500

Note for radio journalists: Studio-quality telephone interviews can be conducted using broadcast audio IP codec technology (IP direct dial or via the ARD node 106813020001). Interview requests should be addressed to the university’s Press and Public Relations Office (+49 (0)681 302-64091 or -2601).

Background:
Saarland University, Saarland University of Applied Sciences (HTW) and industrial partners are working together at ZeMA – Center for Mechatronics and Automation Technology in Saarbrücken to strengthen the fields of mechatronic engineering and industrial automation in Saarland and to promote technology transfer. ZeMA is home to a large number of industry-specific development projects and projects aimed at transforming research findings into practical industrial applications. http://www.zema.de/

Claudia Ehrlich | Universität des Saarlandes

More articles from HANNOVER MESSE:

nachricht Measurement of components in 3D under water
01.04.2015 | Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF

nachricht Greater productivity in industry thanks to digitalization
26.02.2015 | Siemens AG

All articles from HANNOVER MESSE >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Beschichtung lässt Muscheln abrutschen

18.08.2017 | Materialwissenschaften

Fettleber produziert Eiweiße, die andere Organe schädigen können

18.08.2017 | Biowissenschaften Chemie

Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

18.08.2017 | Geowissenschaften