Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017

Lesen ist eine derart junge kulturelle Errungenschaft, dass im Gehirn noch kein eigener Platz für sie vorgesehen ist. Während wir lesen lernen, werden daher Hirnregionen umfunktioniert, die bis dahin für andere Fähigkeiten genutzt wurden. Wissenschaftler der Max-Planck-Institute in Nijmegen und Leipzig haben herausgefunden, dass sich das Gehirn dabei so grundlegend verändert, dass sich selbst evolutionär sehr alte, tiefverborgene Strukturen an die neue Herausforderung anpassen. Zu diesen Erkenntnissen gelangte das Team anhand einer großangelegten Studie in Indien, in der Analphabetinnen sechs Monate lang lesen und schreiben lernten.

Lesen ist evolutionär gesehen eine derart junge Fähigkeit, dass sie sich noch nicht spezifisch genetisch verankert haben kann. Das heißt, es kann im Gehirn nicht das „Leseareal“ geben. Im Zuge des Lesenlernens muss es daher zu einer Art Recyclingprozess im Gehirn kommen:


Zwei Dörfer in Indien: Zu Beginn des Trainings konnten die meisten Teilnehmerinnen kein einziges Wort entziffern. Ein halbes Jahr später hatten sie bereits das Niveau von Erstklässlerinnen erreicht

Max-Planck-Institut für Psycholinguistik, Nijmegen


Lesen lernen führt zu neuroplastischen Veränderungen in einem Netzwerk, das tief ins Gehirn hineinreicht. Dieser Umbauprozess verbessert unsere visuelle Navigation durch Texte.

Max-Planck-Institut für Kognitions- und Neurowissenschaften, Leipzig

Hirnareale, die eigentlich von der Evolution für die Erkennung komplexer Objekte wie Gesichtern konzipiert waren, werden nun durch die Fähigkeit besetzt, Buchstaben in Sprache zu übertragen. Dadurch entwickeln sich einige Regionen unseres visuellen Systems zu Schnittstellen zwischen unserem Seh- und Sprachsystem.

„Bisher ging man davon aus, dass sich diese Veränderungen lediglich auf die äußere Großhirnrinde beschränken, die bereits dafür bekannt war sich schnell an neue Herausforderungen anpassen zu können“, so Studienleiter Falk Huettig vom Max-Planck-Institut für Psycholinguistik. Das internationale Forscherteam hat nun gemeinsam mit indischen Wissenschaftlern des Center of Bio-Medical Research (CBMR) Lucknow und der Universität Hyderabad erstmals in einer umfassenden Studie mit erwachsenen Analphabetinnen beobachtet, was sich im erwachsenen Gehirn verändert, während wir lesen und schreiben lernen – und erstaunliches herausgefunden:

Anders als bisher angenommen werden durch diesen Lernprozess Umstrukturierungen in Gang gesetzt, die bis in den Thalamus und den Hirnstamm hineinreichen. Im Vergleich zur verhältnismäßig sehr jungen Schrift des Menschen verändern sich also Regionen, die evolutionär gesehen recht alt sind - und selbst bei Mäusen und anderen Säugetieren bereits vorhanden sind.

„Wir haben beobachtet, dass die sogenannten Colliculi superiores als Teile des Hirnstamms und das sogenannte Pulvinar im Thalamus ihre Aktivitätsmuster zeitlich enger an Sehareale auf der Großhirnrinde koppeln“, so Michael Skeide, Wissenschaftler am Max-Planck-Institut für Kognitions- und Neurowissenschaften (MPI CBS) in Leipzig und Erstautor der zugrundeliegenden Studie, die jetzt im renommierten Fachmagazin Science Advances veröffentlich wurde. „Die Thalamus- und Hirnstammkerne helfen unserer Sehrinde dabei, wichtige Informationen aus der Flut von visuellen Reizen herauszufiltern noch bevor wir überhaupt bewusst etwas wahrnehmen.“

Das Interessante dabei: Je stärker sich die Signale der Hirnregionen einander angeglichen hatten, desto besser waren die Lesefähigkeiten bereits ausgeprägt. „Wir gehen deshalb davon aus, dass diese beiden Hirnsysteme mit zunehmenden schriftsprachlichen Fähigkeiten besser zusammenarbeiten“, erklärt der Neuropsychologe weiter. „Auf diese Weise können geübte Leser vermutlich effizienter durch Texte navigieren.“

Untersucht hat das interdisziplinäre Forscherteam diese Zusammenhänge in Indien, einem Land mit einer Analphabetenrate von etwa 39 Prozent. Hier sind es vor allem die Frauen, denen der Zugang zu Schulbildung und damit zum Lesen und Schreiben verwehrt bleibt, sodass an der Studie ausschließlich Frauen teilnahmen, alle im Alter zwischen 24 und 40 Jahren. Ein Großteil der Teilnehmerinnen konnte zu Beginn des Trainings kein einziges Wort ihrer Sprache, dem Hindi, entziffern. Hindi, der Landessprache Indiens, liegt das sogenannte Devanagari zugrunde, eine Schrift, deren komplexe Zeichen häufig nicht nur für einzelne Buchstaben, sondern auch für ganze Silben oder auch Wörter stehen.

Nach sechs Monaten Unterrichts erreichten die Teilnehmerinnen bereits ein Niveau, das sich mit dem von Erstklässlerinnen vergleichen lässt. „Dieser Wissenszuwachs ist bemerkenswert“, so Studienleiter Huettig. „Obwohl es für uns als Erwachsene sehr schwierig ist, eine neue Sprache zu lernen, scheint für das Lesen anderes zu gelten. Das erwachsene Gehirn stellt hier seine Formbarkeit eindrucksvoll unter Beweis.“

Prinzipiell habe diese Studie auch in Mitteleuropa stattfinden können. Tatsächlich sei hier jedoch das Thema Analphabetismus so tabubehaftet, dass es sehr schwierig gewesen wäre, überhaupt Teilnehmer zu finden. Doch auch in Indien, warteten zahlreiche Herausforderungen auf die Wissenschaftler: Um auszuschließen, dass soziale Faktoren die Ergebnisse verfälschen, kamen für sie nicht nur lediglich Studienteilnehmer der gleichen Sozialklasse aus zwei benachbarten Dörfern in Frage. Auch die Fahrten in die drei Stunden entfernte Stadt Lucknow mussten organisiert werden um dort die Hirnscans durchführen zu können.

Die erstaunlichen Lernerfolge der Studienteilnehmer sind nicht nur ein hoffungsvolles Signal an erwachsene Analphabeten. Sie werfen auch ein neues Licht auf mögliche Ursachen der Lese-Rechtschreib-Störung (LRS). Bisher wurden Fehlfunktionen des Thalamus als eine mögliche angeborene Ursache der LRS diskutiert, die zu grundlegenden Defiziten in der visuellen Aufmerksamkeit führen könnten. „Da wir nun wissen, dass sich der Thalamus bereits nach wenigen Monaten Lesetrainings so grundlegend verändern kann, muss diese Hypothese neu hinterfragt werden“, so Skeide.

Es könnte sein, dass Betroffene nur deshalb Auffälligkeiten im Thalamus zeigen, weil ihr visuelles System weniger trainiert ist. Das bedeutet, dass diese Auffälligkeiten im Thalamus nur dann als angeborene Ursache infrage kommen, wenn sie sich schon vor der Einschulung zeigen. „Genau das wollen wir nun in einer großangelegten Studie herausfinden, in der wir Betroffene der LRS über viele Jahre hinweg beobachten“, fügt Huettig hinzu.

Orginalpublikation:

Skeide, M., Kumar, M., Mishra, R. K., Tripathi, V.N., Guleria, A., Singh, J.P., Eisner, F., & Huettig, F. (in press). Learning to read alters cortico-subcortical cross-talk in the visual system of illiterates. Science Advances

Verena Müller | Max-Planck-Institut für Kognitions- und Neurowissenschaften
Weitere Informationen:
http://www.cbs.mpg.de

Weitere Nachrichten aus der Kategorie Gesellschaftswissenschaften:

nachricht 3, 2, 1, meins: Kaufentscheidungen im Labor erforscht
28.08.2017 | Karlsruher Institut für Technologie

nachricht Deutschland altert unterschiedlich
22.05.2017 | Bundesinstitut für Bau-, Stadt- und Raumforschung (BBSR)

Alle Nachrichten aus der Kategorie: Gesellschaftswissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie