Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues Modell zu kooperativem Verhalten

08.06.2012
Kooperation benötigt sowohl wiederholte Aufeinandertreffen als auch gleichgesinnte Nachbarn

Die Evolution ist per Definition gnadenlos, sie wählt nach Erfolg aus und merzt Schwächen konsequent aus. Da scheint es nur natürlich, das die Evolution nur Gene bevorzugt, die sich selbst helfen und nicht anderen. Dennoch zeigen viele Arten, insbesondere auch der Mensch, kooperatives Verhalten.

Wissenschaftler erklären diesen Widerspruch entweder mit direkter Reziprozität oder einer strukturierten Population. Wissenschaftler des Max-Planck-Instituts für Evolutionsbiologie in Plön, der Harvard Universität und der Universität von Amsterdam haben ein neues Modell entwickelt, dass die beiden Erklärungen kombiniert. Beide Parameter sind demnach von essenzieller Bedeutung für die Entwicklung von kooperativem Verhalten.

In menschlichen Gesellschaften verhalten sich Menschen dann am kooperativsten, wenn sie mehrfach aufeinander treffen und die Bevölkerung so strukturiert ist, dass Kooperationswillige häufiger auf ihresgleichen treffen.

Wissenschaftler untersuchen die Entstehung von kooperativem Verhalten mit Hilfe des „Gefangenendilemmas”. Dieses Spiel geht von zwei Arten von Spielern aus: Kooperatoren, die Kosten auf sich nehmen um anderen zu helfen und Egoisten, die Kosten vermeiden und dafür kooperative Individuen ausnutzen. In der Gesamtheit ginge es allen besser, wenn jeder kooperieren würde, aber aus Sicht des Individuums ist Egoismus gewinnbringender. Nach den Prinzipien der Evolution müssten sich also die Egoisten gegenüber den kooperativen Individuen durchsetzen.

In Populationen, in denen kooperative Individuen bevorzugt aufeinander treffen und Egoisten auf Egoisten (strukturierte Population), kann Kooperation bisherigen Modellen zufolge jedoch trotzdem entstehen. Auch wenn diese Aufeinandertreffen wiederholt stattfinden (direkte Reziprozität), kann sich Kooperation behaupten. Denn wer damit rechnen muss, dass er sich mit seinem Gegenüber auch in Zukunft auseinandersetzen muss, verhält sich eher kooperativ, als wenn er weiß, dass er ihm nie wieder begegnen wird. Diese beiden Erklärungen wurden in den bisherigen Modellen immer getrennt voneinander untersucht.

Mit Hilfe von Computersimulationen und mathematischen Modellen hat die Gruppe von Wissenschaftlern um Julian Garcia vom Max-Planck-Institut für Evolutionsbiologie ein neues Modell entwickelt, das erstmals beide Ansätze verbindet. Die Forscher fanden heraus, dass wiederholte Aufeinandertreffen allein nicht genügen, um ein hohes Maß an Kooperation zu erhalten, sondern dass dafür auch strukturierte Populationen notwendig sind. Etwas überraschend ergab sich zudem, dass wenn die Bevölkerungsstruktur Kooperation zwischen Individuen sehr wahrscheinlich macht zu viel Gegenseitigkeit sich negativ auf kooperatives Verhalten auswirken kann. Der Grund dafür ist, dass Gegenseitigkeit Egoisten vor anderen Egoisten in der gleichen Art und Weise schützen kann wie kooperatives Verhalten vor diesen geschützt wird.

„Ohne Bevölkerungsstrukturen und nur auf Wiederholung basierend würde Kooperation instabil“, erklärt Garcia die Ergebnisse. Das gilt besonders für menschliche Gesellschaften in denen kooperative Individuen etwas häufiger immer wieder aufeinandertreffen. „Menschliche Kooperation braucht also ein klein wenig Struktur und viel Wiederholung”, sagt Garcia.

Originalveröffentlichung:
Matthijs van Veelena,Julián Garcíac,David G. Randa and Martin A. Nowaka
Direct reciprocity in structured populations
Proceedings of the National Academy of Sciences, Online-Vorabveröffentlichung, 4. Juni 4 2012, doi: 10.1073/pnas.1206694109

Ansprechpartner:
Dr. Kerstin Mehnert
Max-Planck-Institut für Evolutionsbiologie
Telefon: +49 4522 763-233
Fax: +49 4522 763-310
Email: mehnert@­evolbio.mpg.de

Dr. Julian Garcia
Max-Planck-Institut für Evolutionsbiologie
Telefon: +49 4522 763-224
Email: garcia@­evolbio.mpg.de

Dr Harald Rösch | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.­evolbio.mpg.de

Weitere Nachrichten aus der Kategorie Gesellschaftswissenschaften:

nachricht 3, 2, 1, meins: Kaufentscheidungen im Labor erforscht
28.08.2017 | Karlsruher Institut für Technologie

nachricht Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um
26.05.2017 | Max-Planck-Institut für Kognitions- und Neurowissenschaften

Alle Nachrichten aus der Kategorie: Gesellschaftswissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie