Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mathematische Algorithmen berechnen soziales Verhalten

14.11.2016

Lange Zeit galt die mathematische Modellierung sozialer Systeme und Dynamiken als Science Fiction. Doch menschliches Verhalten berechnen und damit beeinflussen zu können, ist auf dem besten Weg Realität zu werden. Wissenschaftlerinnen und Wissenschaftler der Technischen Universität München (TUM) entwickeln gerade die passenden Werkzeuge dafür. Mit ihnen lassen sich Szenarien berechnen, um die Sicherheit bei Großveranstaltungen zu erhöhen oder Evakuierungen effizienter zu gestalten.

Forschung mit dem Ziel, das Verhalten von Gruppen vorherzusagen und darauf Einfluss nehmen zu können, hat eine lange Tradition. Doch nicht zuletzt wegen der vielfältigen Wechselwirkungen zwischen dem physischen, dem emotionalen, dem kognitiven und dem sozialen Bereich erscheint es praktisch unmöglich, das Verhalten eines Individuums präzise zu prognostizieren.


Menschen bewegen sich nicht gleichförmig über einen Platz. Es bilden sich Muster heraus, die sich mathematisch analysieren lassen

Bild: Andreas Battenberg / TUM


Menschen bewegen sich nicht gleichförmig über einen Platz. Es bilden sich Muster heraus, die sich mathematisch analysieren lassen

Bild: Andreas Battenberg / TUM

Anders sieht die Sache aus, wenn Menschen im Straßenverkehr, in sozialen Netzwerken oder auf Großveranstaltungen nicht als Individuen erscheinen, sondern als Teile einer Menschenmenge auftreten. „Als Masse verhalten sich Menschen durchaus ähnlich wie Teilchen von Flüssigkeiten oder Gasen“, erläutert Professor Massimo Fornasier, Inhaber des Lehrstuhls für Angewandte Numerische Analysis der TU München.

Analogie zur Physik

In der Physik muss man nicht die genauen Eigenschaften jedes einzelnen Teilchens kennen, um die Bewegungsrichtung großer Mengen von Gasmolekülen mit hoher Wahrscheinlichkeit berechnen zu können. Es genügt, ihre durchschnittlichen Eigenschaften zu kennen.

„Genau so können wir bei der Betrachtung strömender Menschenmassen, Schwärmen von Tieren oder interagierender Roboter vorgehen: Analog zu den Anziehungskräften zwischen Molekülen eines Gases können wir generalisierte Verhaltensmuster als wechselseitige Kräfte zwischen einzelnen Agenten beschreiben und sie so in mathematischen Gleichungen abbilden“, beschreibt Fornasier seine Vorgehensweise.

Berechnung kollektiver Verhaltensmuster

Professor Fornasier und sein Team bewiesen unlängst mathematische Gesetzmäßigkeiten die zeigen, wie überraschend einfach es ist, auf der Grundlage beobachteter Daten über die Dynamik präzise mathematische Modelle für bestimmte relativ einfache Gruppeninteraktionen automatisch zu produzieren.

Mithilfe von Computersimulationen können die Mathematiker damit mögliche kollektive Verhaltensmuster einer großen Anzahl sich wechselseitig beeinflussender Individuen in einer aktuellen Situation beschreiben. „Im nächsten Schritt können wir damit auch Vorhersagen über künftiges Verhalten treffen“, sagt Fornasier. „Und wenn wir das Verhalten einer Gruppe interagierender Agenten vorausberechnen können, ist es nur noch ein kleiner Schritt sie auch steuern zu können.“

Informierte Agenten nutzen den „Herdentrieb“

In einem Experiment, das sie im Mai 2015 in Zusammenarbeit mit dem Consiglio Nazionale delle Ricerche (CNR) and the University of Rome „La Sapienza” in Italien durchführten, zeigten Fornasier und sein Team, dass das Verfahren sich tatsächlich dazu eignet, das Verhalten von Gruppen zu beeinflussen.

Dazu hatten die Forscher zwei Gruppen von etwa 40 Studierenden damit beauftragt, ein bestimmtes Ziel in einem Gebäude zu suchen. In die eine Gruppe schleusten die Wissenschaftler zwei informierte Agenten ein, die sich jedoch nicht zu erkennen geben durften. Lediglich dadurch, dass sie zielstrebig in eine vorgegebene Richtung gingen, brachten sie die Gruppe in Bewegung auf das Ziel.

Dieser Versuch zeigt, dass die Übernahme der Kontrolle in selbstorganisierenden Systemen, zu denen auch Gruppen von Individuen gehören, mit überraschend geringem Aufwand möglich ist. Die Mathematiker belegten darüber hinaus, dass die Ergebnisse auch für sehr große Gruppen gelten. „Tatsächlich reichen zwei bis drei solcher Agenten pro hundert Menschen aus“, sagt Massimo Fornasier.

Meinungsbildung mit der Hütehundestrategie

Da seine mathematischen Modelle in einer völlig abstrakten Umgebung formuliert sind, können sie leicht an verschiedene Situationen angepasst werden. Mit ihnen lassen sich effiziente Möglichkeiten finden, große Besuchermengen stressfrei durch Gebäude zu leiten oder Menschen aus gefährlichen Situationen zu evakuieren.

„Wir können unsere Ergebnisse aber auch auf andere interessante gesellschaftliche Bereiche übertragen, beispielsweise auf das Verhalten von Investoren auf den Finanzmärkten“, so Fornasier. Dort können durch genau abgestimmte Aktivitäten großer Investoren erhebliche Marktbewegungen ausgelöst werden.

Auch die Meinungsbildung einer Gruppe basiert auf gegenseitiger Interaktion von Menschen. In ihren Modellen zeigten die Mathematiker, dass es am effektivsten ist, sich auf die radikalsten Vertreter einer Auffassung zu konzentrieren. Gelingt es, diese zu überzeugen, zieht die Gruppe mit.

„Dafür gibt es auch ein schönes Modell in der Natur“, so Fornasier. „Um eine Schafherde in die gewünschte Richtung zu treiben, konzentrieren sich gute Hütehunde immer auf das von der Herde am weitesten entfernte Tier. Indem sie das sturste Schaf einfangen, kommen sie zum Ziel.“

Grenzen der Vorhersage

„Bei allen denkbar positiven Anwendungsmöglichkeiten stellt sich natürlich auch die Frage des Missbrauchs“, sagt Professor Fornasier. „Die gute Nachricht in diesem Zusammenhang ist, dass wir auch bewiesen haben, dass das Verhalten nicht für alle Typen von Dynamik und nicht in allen Situationen so leicht vorhauszusagen ist.

„Eine wichtige Voraussetzung der Berechenbarkeit ist es, dass die enorme Vielzahl der möglichen Wechselwirkungen von Agenten in einer großen Gruppe sinnvoll auf wenige wirksame reduziert werden kann“, sagt Massimo Fornasier.“Gut funktioniert die Vorhersage dort, wo eine Gruppe generalisierte Verhaltensmuster zeigt.“

Ist jedoch bei konkurrierenden Wechselwirkungskräften die Energie einzelner Agenten zu groß ist, kann das Gleichgewicht und damit eine gemeinsame Bewegung der Agentengruppe mit einfachen, sporadischen Kontrolleingriffen nicht mehr hergestellt werden.

„Eine umfassende Voraussage von Ereignissen, wie sie beispielsweise dem Mathematiker Hari Seldon in Isaac Asimovs Foundation Zyklus möglich ist oder eine so umfassende Kontrolle wie in Aldous Huxleys „Schöne neue Welt“, wird auch weiter Science Fiction bleiben“, sagt Professor Fornasier.

---

Die Ergebnisse wurden im Juli 2016 auf dem Europäischen Mathematiker Kongress in Berlin vorgestellt. Die Forschungsarbeit wurde vom European Research Council (ERC) im Rahmen des ERC-Start Grant-Projektes "High-Dimensional Sparse Optimal Control" (HDSPCONTR) gefördert. Neben Mitgliedern der Fornasier-Gruppe waren zahlreiche weitere Forscher an der TUM und kooperierenden internationalen Institutionen beteiligt [in alphabetischer Reihenfolge]: Dr. Giacomo Albi (TUM), Dr. Mattia Bongini (TUM), Dr. Marco Caponigro (Conservatoire National des Arts et Métiers, Paris), Dr. Emiliano Cristiani (Consiglio Nazionale delle Ricerche (CNR), IAC, Rom), Dr. Markus Hansen (TUM), Dr. Dante Kalise (Johann Radon Institut, ÖAW, Linz), Prof. Mauro Maggioni (Johns Hopkins University, Baltimore, USA), Prof. Dr. Benedetto Piccoli (Rutgers University, Camden, USA), Dr. Francesco Rossi (Aix-Marseille Université, Marseille), Dr. Francesco Solombrino (TUM), Prof. Dr. Emmanuel Trélat (Université Pierre et Marie Curie (Paris 6), Paris).

Publikationen:

M. Fornasier; Learning and sparse control of multiagent systems. In: Proceedings of the 7th European Congress of Mathematics, 2016 (im Druck)
Link: https://www-m15.ma.tum.de/foswiki/pub/M15/Allgemeines/PublicationsEN/Massimo_For...

M. Bongini, M. Fornasier, M. Hansen and M. Maggioni. Inferring Interaction Rules from Observations of Evolutive Systems I: The Variational Approach; arXiv:1602.00342v2 [math.DS] 16 Feb 2016
Link: https://www-m15.ma.tum.de/foswiki/pub/M15/Allgemeines/PublicationsEN/BFHM16.pdf

M. Caponigro, M. Fornasier, B. Piccoli and E. Trélat. Sparse stabilization and control of alignment models, Mathematical Models and Methods in Applied Sciences, 25(03):521-564, 2015
Link: https://www-m15.ma.tum.de/foswiki/pub/M15/Allgemeines/PublicationsEN/flocking_V9...

M. Fornasier and F. Solombrino. Mean-field optimal control, ESAIM Control Optim. Calc. Var., 20(4):1123-1152, 2014
Link: https://www-m15.ma.tum.de/foswiki/pub/M15/Allgemeines/PublicationsEN/arxiv.pdf

Kontakt:

Prof. Dr. Massimo Fornasier
Lehrstuhl für Angewandte Numerische Analysis
Technische Universität München
Boltzmannstr. 3, 85748 Garching, Germany
Tel.: +49 89 289 17485 - E-Mail: massimo.fornasier@ma.tum.de

Weitere Informationen:

https://www-m15.ma.tum.de/Allgemeines/WebHomeDE
https://www.tum.de/die-tum/aktuelles/pressemitteilungen/kurz/article/33532/ Link zur Pressemitteilung

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Gesellschaftswissenschaften:

nachricht 3, 2, 1, meins: Kaufentscheidungen im Labor erforscht
28.08.2017 | Karlsruher Institut für Technologie

nachricht Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um
26.05.2017 | Max-Planck-Institut für Kognitions- und Neurowissenschaften

Alle Nachrichten aus der Kategorie: Gesellschaftswissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik