Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zoomobjektiv mit deformierbaren Spiegeln

06.01.2010
Erkundungsflugzeuge, die Landschaften analysieren, haben optische Messsysteme an Bord. Diese müssen über einen sehr breiten Spektralbereich farbfehlerfrei sein. Forscher haben nun die Vorstufe zu einem farbfehlerfreien Zoomobjektiv mit deformierbaren Spiegeln entwickelt.

Ein unbemanntes Kleinflugzeug zieht seine Kreise über der Landschaft und erfasst das typische Grün eines Nadelwalds oder die Wärme, die eine Stadt abstrahlt. An Bord benötigt man Objektive, die vom ultravioletten über den sichtbaren bis in den nahen und mittleren infraroten Spektralbereich farbfehlerfrei funktionieren.

Konventionelle Objektive, die auf Linsen basieren, eignen sich dazu nur bedingt: Sollen sie einen breiten Spektralbereich abbilden, leidet die Bildqualität, die Aufnahme bekommt Farbsäume und wird unscharf. Bislang braucht man daher für jeden Spektralbereich ein extra Objektiv. Das Problem: Die Kleinflugzeuge können nur ein begrenztes Gewicht tragen.

Forscher vom Fraunhofer-Institut für Photonische Mikrosysteme IPMS in Dresden wollen Aufnahmen in unterschiedlichen Spektralbereichen mit einem einzigen System farbfehlerfrei machen. So hält die Batterie länger und die Flugdauer erhöht sich. "Wir haben das Design für ein neues Objektiv entwickelt, dabei aber keine Linsen, sondern Spiegel verwendet", erklärt Dr. Heinrich Grüger, Gruppenleiter am IPMS. Das Objektiv besteht aus vier Spiegeln. Sie sind so angeordnet, dass sie sich nicht gegenseitig abschatten - so entsteht ein kontraststärkeres Bild. Zwei deformierbare Spiegel sorgen für den dreifachen Zoombereich - bei gleichbleibend hoher Bildqualität. Ein weiterer Vorteil: Aufwendige mechanische Führungen im Gehäuse werden damit überflüssig.

Grüger hat weitere Märkte im Blick: "Die Automatisierungstechnik sowie der Automobil- und Gerätebau profitieren von einem derartigen Objektiv. Wir hoffen daher, bald in die Technologieentwicklung einsteigen zu können." Dazu müssten als erstes geeignete deformierbare Spiegel realisiert werden. Denn herkömmliche optische Spiegel sind in ihrer Form starr. "Für die Zoomfunktion brauchen wir Spiegel, bei denen wir den Krümmungsradius über Aktuatoren flexibel steuern können", sagt Grüger. Zwar wurden am IPMS bereits deformierbare Spiegel entwickelt, jedoch erreichen diese momentan noch nicht die Größe und die Variabilität, die für das Spiegel-Zoomobjektiv nötig sind: Für ein leistungsfähiges Zoomobjektiv mit einer akzeptablen Lichtstärke müssten die Spiegel einen Durchmesser von mindestens 12 Millimetern haben, so das Ergebnis von optischen Simulationen.

Die optische Leistungsfähigkeit des Objektivs können die Forscher dennoch bereits demonstrieren: Dazu haben sie drei identische Objektive mit drei unterschiedlichen Brennweiten aufgebaut, bei denen die deformierbaren Spiegel durch klassische feste Spiegel ersetzt wurden.

Kristof Seidl | Fraunhofer Gesellschaft
Weitere Informationen:
http://www.fraunhofer.de/presse/presseinformationen/2010/01/objektiv-deformierbare-spiegel.jsp

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Internationales Team um Oldenburger Meeresforscher untersucht Meeresoberfläche
21.03.2017 | Carl von Ossietzky-Universität Oldenburg

nachricht Weniger Sauerstoff – ist Humboldts Nährstoffspritze in Gefahr?
17.03.2017 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen