Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Ozeanströmungen Klimaarchive beeinflussen

04.03.2015

Kalkschalen mariner Kleinstorganismen sind ein wichtiges Klimaarchiv. Allerdings können Meeresströmungen die aus diesen Schalen abgeleiteten Temperaturrekonstruktionen verfälschen. 

Das hat ein internationales Team aus Paläoozeanographen und Ozeanmodellierern unter Beteiligung des GEOMAR Helmholtz-Zentrums für Ozeanforschung Kiel jetzt nachgewiesen. Mit ihrer Studie, die heute im internationalen Online-Fachjournal Nature Communications erscheint, wollen die Beteiligten helfen, zukünftige Klimarekonstruktionen zu präzisieren.


Simulierte Temperaturen und Strömungen (Momentaufnahme) um Afrika. Die starken Strömungen in der Region vertreiben auch Foraminiferen, die als Klimaarchiv genutzt werden.

Simulation und Darstellung: GEOMAR

Sie sind mit bloßem Auge kaum zu erkennen, und doch gehören sie zu den wichtigsten Zeugen der globalen Klima- und Umweltgeschichte: Foraminiferen, einzellige Lebewesen, die Kalkschalen bilden, vor allem im Meer leben und seit mindestens 560 Millionen Jahren auf der Erde existieren.

Die chemische Zusammensetzung ihrer Schalen speichert Informationen über die Temperaturen und die Zusammensetzung des Meerwassers zu Lebzeiten der Organismen. Am Ende ihres Lebens sinken die Foraminiferen auf den Meeresboden. Paläoozeanographen finden die Schalen heute in Sedimentkernen und können die gespeicherten Informationen mit modernen Analysemethoden entschlüsseln.

„Es gibt dabei aber ein Problem: Foraminiferen treiben mit den Strömungen. Das heißt, ihr Fundort ist nicht zwangsläufig identisch mit dem Ort, an dem sie die Umweltdaten gespeichert haben“, erklärt der Ozeanograph Dr. Jonathan Durgadoo vom GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel.

Er gehört zu einem interdisziplinären Team von Paläoozeanographen und Ozeanmodellierern, die jetzt erstmals anhand konkreter Sedimentkerne und mit Hilfe von Ozeanmodellen die möglichen Abweichungen der rekonstruierten Temperaturen ermittelt haben. Die Studie erscheint heute in dem internationalen Online-Fachjournal Nature Communications.

Ausgangspunkt der Studie waren die Positionen von zwei Sedimentkernen vor der Küste Südafrikas. In hochauflösenden Ozeanmodellen haben die Kieler Wissenschaftler berechnet, von wo die Foraminiferen zum Fundort dieser Sedimentkerne getrieben worden sein können.

„Dabei ergaben sich Herkunftsgebiete, die teilweise mehrere hundert Kilometer entfernt lagen“, sagt Dr. Durgadoo. In einem weiteren Schritt haben australische Kollegen mit Hilfe eines globalen Ozeanmodells geprüft, in welchen Teilen der Weltozeane Foraminiferen wie weit vertrieben werden, bevor sie als Klimaarchiv am Meeresboden landen.

„Die Strecken, die die Foraminiferen mit den Strömungen zurücklegen, variieren stark, je nachdem in welchen Seegebieten sie vorkommen und wie lange sie leben“, erklärt Dr. Durgadoo. „Die Abweichung in den Temperaturrekonstruktionen, die sich daraus ergibt, kann aber bis zu drei Grad betragen.“

„Diese neue Studie ist ein erster Schritt, damit Wissenschaftler ihre Untersuchungen zu vergangenen Klimazuständen in Zukunft präzisieren können. Sie können damit schnell einen Eindruck erhalten, wie zuverlässig bestimmte Daten sind, wenn sie die Foraminiferenarten und den Ort des Sedimentkerns in Betracht ziehen“, sagt der Erstautor der Studie, Dr. Erik Van Sebille, vom ARC Centre of Excellence for Climate System Science an der Universität von New South Wales. Weitere Studien sollen ein noch genaueres Eichungs-Werkzeug für Klimarekonstruktionen liefern.

Für die beteiligten Kieler Modellierer zeigt die Studie, welche Chancen sich bieten, wenn verschiedene wissenschaftliche Disziplinen zusammenarbeiten. „Beide, modellierende Ozeanographen und Paläoozeanographen, haben hier voneinander gelernt und konnten dadurch in ihren Bereichen Fortschritte erzielen. Dieses Erfolgsmodell wollen wir natürlich auch in Kiel fortsetzen, denn neben Ozeanmodellierung ist auch Paläoozeanographie ein Schwerpunkt der Kieler Meeresforschung“, betont Professor Dr. Arne Biastoch vom GEOMAR, ebenfalls Ko-Autor der aktuellen Studie.

Originalarbeit:
Van Sebille, E., P. Scussolini, J. V. Durgadoo, F. Peeters, A. Biastoch, W. Weijer, C. Turney, C. Paris, R. Zahn (2015): Ocean currents generate large footprints in marine palaeoclimate proxies. Nature Communications, https://dx.doi.org/10.1038/ncomms7521

Weitere Informationen:

http://www.geomar.de Das GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

Andreas Villwock | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Was macht Korallen krank?
08.12.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Neue Weltkarte zeigt Karstgrundwasserleiter
04.12.2017 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Im Focus: Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten

Mit neuartigen Experimenten enträtseln Forscher des Helmholtz-Zentrums Geesthacht und der Technischen Universität Hamburg, warum winzige Metallstrukturen extrem fest sind

Ultraleichte und zugleich extrem feste Werkstoffe – poröse Nanomaterialien aus Metall versprechen hochinteressante Anwendungen unter anderem für künftige...

Im Focus: Geburtshelfer und Wegweiser für Photonen

Gezielt Photonen erzeugen und ihren Weg kontrollieren: Das sollte mit einem neuen Design gelingen, das Würzburger Physiker für optische Antennen erarbeitet haben.

Atome und Moleküle können dazu gebracht werden, Lichtteilchen (Photonen) auszusenden. Dieser Vorgang verläuft aber ohne äußeren Eingriff ineffizient und...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Papstar entscheidet sich für tisoware

08.12.2017 | Unternehmensmeldung

Natürliches Radongas – zweithäufigste Ursache für Lungenkrebs

08.12.2017 | Unternehmensmeldung

„Spionieren“ der versteckten Geometrie komplexer Netzwerke mit Hilfe von Maschinenintelligenz

08.12.2017 | Biowissenschaften Chemie