Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Wasserstoff-Highway in der Tiefsee

11.08.2011
Weltweit wird nach Wegen gesucht, wie der steigende Energiebedarf unserer Gesellschaft umweltfreundlicher gedeckt werden kann. Ein vielversprechender Ansatz scheint der Einsatz Wasserstoff-betriebener Brennstoffzellen zu sein.

Während auf diesem Gebiet erhebliche Forschungsanstrengungen unternommen werden, hat die Natur lebende „Brennstoffzellen“ bereits in Betrieb genommen: Wissenschaftler des Max-Planck-Instituts für marine Mikrobiologie und ihre Kollegen vom Exzellenzcluster MARUM an der Universität Bremen entdeckten im Rahmen von Forschungsfahrten zu heißen Quellen in der Tiefsee Muscheln, die ihre eigenen Wasserstoff-betriebenen Brennstoffzellen „an Bord“ haben – und zwar in Form symbiotischer Bakterien. Die Fähigkeit, Wasserstoff als Energiequelle zu nutzen, sei bei den Lebensgemeinschaften an Tiefseequellen vermutlich weit verbreitet, schreiben die Forscher in der aktuellen Ausgabe des Fachblatts Nature.


An den Schwarzen Rauchern in 3000 Meter Tiefe gedeihen ungewöhnliche Lebensgemeinschaften.
Foto: MARUM


Muschelfelder um die hydrothermalen Quellen herum erreichen eine Ausdehnung von einigen hundert Quadratmetern.
Foto: MARUM

Heiße Quellen in der Tiefsee entstehen an den Verschiebungszonen der Erdplatten, dort, wo Magma in die obere Erdkruste aufsteigt und Seewasser mit dem hoch erhitzten Magma in Kontakt kommt. Das erhitzte Seewasser löst Mineralien aus der Erdkruste, und tritt mit bis zu 400 Grad Celsius an den sogenannten Schwarzen Rauchern wieder aus. So gelangen Schwefelwasserstoff, Ammonium, Methan, Eisen oder Wasserstoff ins Meer. Aus der Oxidation dieser anorganischen Verbindungen gewinnen die Organismen Energie, um Kohlenhydrate aufzubauen. Da in die Tiefen des Ozeans kein Sonnenlicht vordringt, müssen chemische Reaktionen diese Energie liefern. In Analogie zur Fotosynthese spricht man daher von Chemosynthese.

Chemosynthetische Mikroorganismen bilden die Existenzgrundlage für einzigartige Lebensgemeinschaften an den heißen Quellen der Tiefsee. Denn viele, bis vor kurzem noch vollkommen unbekannte Arten von Würmern, Weichtieren und Gliederfüßern können dort nur überleben, weil sie symbiotische Beziehungen mit Bakterien eingegangen sind und somit quasi ihr eigenes Kraftwerk betreiben. Bislang waren allerdings nur zwei Quellen bekannt, aus denen die jeweiligen symbiotischen Mikroorganismen Energie gewinnen: Schwefelwasserstoff und Methan. „Wir haben jetzt eine dritte Quelle entdeckt", sagt die Leiterin des Forschungsprojektes Nicole Dubilier vom Max-Planck-Institut für marine Mikrobiologie in Bremen.

In 3 000 Meter Tiefe am Mittelatlantischen Rücken, einem untermeerischen Gebirgszug, befindet sich auf halber Strecke zwischen der Karibik und den Kapverdischen Inseln das Logatchev-Hydrothermalfeld. In einer Reihe von Forschungsfahrten registrierten die Forscher hier die höchsten jemals an heißen Quellen gemessenen Konzentrationen an Wasserstoff. „Nach unseren Berechnungen bringt die Oxidation von Wasserstoff dort siebenmal mehr Energie als die Methanoxidation und bis zu 18-mal mehr Energie als die Oxidation von Sulfid", erklärt Dubiliers Mitarbeiterin Jillian Petersen.

In den Kiemen der dort lebenden Tiefseemuschel Bathymodiolus puteoserpentis entdeckten die Wissenschaftler dann erstmals ein Schwefel-oxidierenden Symbionten, der auch Wasserstoff einsetzen kann, um Energie und Nahrung zu gewinnen. Um diesen mikrobiellen Wasserstoff-betriebenen „Brennstoffzellen" der Tiefseemuschel auf die Spur zu kommen, waren die Forscher auf die Tiefseeroboter MARUM-QUEST vom MARUM und Kiel 6000 vom IFM-GEOMAR angewiesen. Damit sammelten sie Proben in mehreren tausend Meter Tiefe. Mittels molekularbiologischer Methoden gelang es ihnen anschließend eines der Schlüsselgene für die Wasserstoff-Oxidation nachzuweisen und den Wasserstoff-Verbrauch experimentell zu bestimmen.

Muschelfelder um die hydrothermalen Quellen herum erreichen eine Ausdehnung von einigen hundert Quadratmetern, auf denen sich dann bis zu einer halben Millionen Individuen tummeln. „Unsere Experimente deuten darauf hin, dass die Muschelpopulation im Logatchev-Hydrothermalfeld bis zu 5000 Liter Wasserstoff pro Stunde oxidiert", rechnet Frank Zielinski vor, der in der Bremer Arbeitsgruppe von Dubilier promoviert hat und inzwischen am Helmholtz-Zentrum für Umweltforschung (UFZ) in Leipzig forscht. Die bakteriellen Untermieter der Muscheln spielen demnach eine beachtliche Rolle als Primärproduzenten und bei der Umwandlung von geochemischer Energie in Biomasse. „Entlang der mittelozeanischen Rücken gibt es so etwas wie einen „Wasserstoff-Highway" mit Zapfstellen für die symbiotische Primärproduktion - das sind die Hydrothermalquellen", sagt Jillian Petersen.

Auch die Symbionten anderer an den Hydrothermalquellen lebenden Tiere, wie die des Röhrenwurms Riftia pachyptila oder die Garnele Rimicaris exoculata, besitzen dieses Schlüsselgen. „Wir gehen deshalb davon aus, dass die Fähigkeit, Wasserstoff als Energiequelle zu nutzen, unter diesen symbiotischen Gemeinschaften weit verbreitet ist, und zwar selbst dort, wo der Wasserstoff in nur sehr geringen Mengen vorkommt", so Nicole Dubilier.

http://www.ufz.de/index.php?de=22008
http://www.mpg.de/4390410/Wasserstoff_Symbionten
Originalpublikation:
Jillian M. Petersen, Frank U. Zielinski, Thomas Pape, Richard Seifert, Cristina Moraru, Rudolf Amann, Stephane Hourdez, Peter R. Girguis, Scott D. Wankel, Valerie Barbe, Eric Pelletier, Dennis Fink, Christian Borowski, Wolfgang Bach, Nicole Dubilier (2011): Hydrogen is an energy source for hydrothermal vent symbioses. Nature 474, 11 August 2011. doi: 10.1038/nature10325

http://www.nature.com/nature/index.html

Die Untersuchungen wurden von der Max Planck Gesellschaft und der DFG gefördert („Schwerpunktprogramm 1144: Vom Mantel zum Ozean: Energie-, Stoff- und Lebenszyklen an Spreizungsachsen" und Exzellenzcluster „Der Ozean im System Erde" am MARUM, Bremen).

Weitere Informationen erhalten Sie von:

Dr. Nicole Dubilier
Max-Planck-Institut für Marine Mikrobiologie
Telefon: 0421 2028 932
Fax: 0421 2028 580
E-Mail: ndubiliempi-bremen.de
http://www.mpi-bremen.de/en/Nicole_Dubilier.html
Dr. Jillian Petersen
Max-Planck-Institut für Marine Mikrobiologie
Telefon: 0421-2028-906
http://www.mpi-bremen.de/Jillian_Petersen.html
Dr. Frank Zielinski
Helmholtz-Zentrum für Umweltforschung (UFZ)
Telefon: 0341-235-1373
http://www.ufz.de/index.php?de=14582
oder über
Tilo Arnhold (UFZ-Pressestelle)
Telefon: 0341-235-1635
http://www.ufz.de/index.php?de=640

Tilo Arnhold | UFZ News
Weitere Informationen:
http://www.mpg.de
http://www.ufz.de

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel
23.05.2018 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

nachricht PM des MCC: CO2-Entzug aus Atmosphäre für 1,5-Grad-Ziel unvermeidbar
23.05.2018 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Hilfe molekularer Schalter lassen sich künftig neuartige Bauelemente entwickeln

Einem Forscherteam unter Führung von Physikern der Technischen Universität München (TUM) ist es gelungen, spezielle Moleküle mit einer angelegten Spannung zwischen zwei strukturell unterschiedlichen Zuständen hin und her zu schalten. Derartige Nano-Schalter könnten Basis für neuartige Bauelemente sein, die auf Silizium basierende Komponenten durch organische Moleküle ersetzen.

Die Entwicklung neuer elektronischer Technologien fordert eine ständige Verkleinerung funktioneller Komponenten. Physikern der TU München ist es im Rahmen...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Im Focus: Faserlaser mit einstellbarer Wellenlänge

Faserlaser sind ein effizientes und robustes Werkzeug zum Schweißen und Schneiden von Metallen beispielsweise in der Automobilindustrie. Systeme bei denen die Wellenlänge des Laserlichts flexibel einstellbar ist, sind für spektroskopische Anwendungen und die Medizintechnik interessant. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT) haben, im Rahmen des vom Bundesministerium für Bildung und Forschung (BMBF) geförderten Projekts „FlexTune“, ein neues Abstimmkonzept realisiert, das erstmals verschiedene Emissionswellenlängen voneinander unabhängig und zeitlich synchron erzeugt.

Faserlaser bieten im Vergleich zu herkömmlichen Lasern eine höhere Strahlqualität und Energieeffizienz. Integriert in einen vollständig faserbasierten...

Im Focus: LZH zeigt Lasermaterialbearbeitung von morgen auf der LASYS 2018

Auf der LASYS 2018 zeigt das Laser Zentrum Hannover e.V. (LZH) vom 5. bis zum 7. Juni Prozesse für die Lasermaterialbearbeitung von morgen in Halle 4 an Stand 4E75. Mit gesprengten Bombenhüllen präsentiert das LZH in Stuttgart zudem erste Ergebnisse aus einem Forschungsprojekt zur zivilen Sicherheit.

Auf der diesjährigen LASYS stellt das LZH lichtbasierte Prozesse wie Schneiden, Schweißen, Abtragen und Strukturieren sowie die additive Fertigung für Metalle,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Größter Astronomie-Kongress kommt nach Wien

24.05.2018 | Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Das große Aufräumen nach dem Stress

25.05.2018 | Biowissenschaften Chemie

APEX wirft einen Blick ins Herz der Finsternis

25.05.2018 | Physik Astronomie

Weltneuheit im Live-Chat erleben

25.05.2018 | Messenachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics