Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wasser gelangte früher auf die Erde

26.01.2017

Nature: Studienergebnisse widersprechen "Kometen-Hypothese"

Gelangte das Wasser bereits früh während der Erdentwicklung auf die Erde oder erst später durch Einschläge von Kometen? Beide Hypothesen werden diskutiert. Planetologen der WWU haben nun durch Isotopenmessungen gezeigt: Das Wasser muss früh auf die Erde gekommen sein. Die Studie ist in "Nature" veröffentlicht.


Der "blaue Planet" von oben: Blick von der Internationalen Raumstation (ISS) bei Nacht auf das Mittelmeer, Italien und die Alpen

© ESA/NASA

Das Wasser auf der Erde ist Voraussetzung für das Leben wie wir es kennen. Aber wo kommt es her und seit wann ist es hier? Wissenschaftler diskutieren zwei Möglichkeiten. So könnte das Wasser schon früh während der Hauptphase der Erdentstehung da gewesen sein. Eine andere Hypothese besagt, dass die Erde zunächst völlig trocken war und das Wasser erst später auf die Erde gelangte: durch die Einschläge von Kometen oder "nassen" Asteroiden, die aus äußeren Bereichen des Sonnensystems stammten.

Planetologen der Westfälischen Wilhelms-Universität Münster (WWU) prüften diese Hypothese nun mit sehr genauen Isotopenmessungen. Ihr Fazit: Das Wasser gelangte bereits früh während der Erdentstehung auf die Erde. Die Ergebnisse sind in der aktuellen Ausgabe des Fachmagazins "Nature" veröffentlicht.

Die münsterschen Wissenschaftler untersuchten die Isotopen-Zusammensetzung des Edelmetalls Ruthenium. Der Hintergrund: Die Edelmetalle haben eine extreme Tendenz, sich mit Metall zu verbinden. Sie sollten daher bei der Bildung der Erde vollständig in den metallischen Erdkern gewandert sein. Jedoch sind im Erdmantel Edelmetalle vorhanden.

Dies wird damit erklärt, dass nach Abschluss der Kernbildung kleinere Körper wie Asteroide oder Kometen mit der Erde kollidierten und dadurch neues Material auf die Erde gelangte. Dieses Material wird in der Fachsprache "late veneer" genannt (englisch für "späte dünne Lage"). Es gelangte nicht mehr in den Erdkern und reicherte den Erdmantel wieder mit Edelmetallen an. Dieses "late veneer" könnte Berechnungen zufolge auch das gesamte Wasser auf die Erde gebracht haben.

Die münsterschen Forscher zeigten jedoch, dass es zwischen Asteroiden und der Erde Unterschiede in der Isotopen-Zusammensetzung des Rutheniums gibt. "Alles Ruthenium im Erdmantel kommt vom 'late veneer'. Die Unterschiede in der Isotopen-Zusammensetzung zeigen, dass das 'late veneer' nicht aus Asteroiden bestehen kann, sondern aus dem Inneren des Sonnensystems stammen muss", erklärt Planetologe Dr. Mario Fischer-Gödde. Gemeinsam mit Prof. Dr. Thorsten Kleine hatte er verschiedene Meteorite untersucht. Diese Meteorite sind Bruchstück von Asteroiden, die sich zwischen Mars und Jupiter befinden.

Die Forscher zeigten, dass die Isotopen-Unterschiede größer werden, je weiter die Asteroide von der Sonne entfernt sind. Sie gehen davon aus, dass dieses Prinzip auch für Kometen gilt. Da aber nur Asteroide und Kometen, die weit von der Sonne entfernt sind, überhaupt genügend Wasser enthalten, schließen diese Daten aus, dass das Wasser auf der Erde vom "late veneer" stammt, so das Fazit von Mario Fischer-Gödde und Thorsten Kleine.

"Unseren Daten zeigen, dass die Erde schon sehr früh, in ihrer Hauptbildungsphase, wasserreiche Körper aufnahm", erklären die beiden Wissenschaftler. Dieses Ergebnis passe zu neueren Modellen der Planetenbildung, die zeigen, dass durch die Entstehung von Jupiter schon sehr früh wasserreiches Material vom äußeren in das innere Sonnensystem transportiert wurde. "Dieses Material wurde in die Erde eingebaut und hat unserem Heimatplaneten lebensfreundlich gemacht", sagt Thorsten Kleine.

Die Arbeit entstand im Rahmen des Sonderforschungsbereichs SFB-Transregio 170 "Late accretion onto terrestrial planets" ("Spätes Wachstum erdähnlicher Planeten") und wurde von der Deutschen Forschungsgemeinschaft unterstützt.

Originalpublikation:

Mario Fischer-Gödde und Thorsten Kleine (2017): Ruthenium isotopic evidence for an inner Solar System origin of the late veneer. Nature 541, 525–527 (26 January 2017), doi:10.1038/nature21045

Weitere Informationen:

http://www.nature.com/nature/journal/v541/n7638/full/nature21045.html Originalpublikation in "Nature"
http://www.uni-muenster.de/Planetology/ifp/research/Kosmochemie.html AG Kosmochemie und Isotopengeochemie/Institut für Planetologie an der WWU

Dr. Christina Heimken | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-muenster.de/

Weitere Berichte zu: Asteroiden Edelmetalle Erdkern Erdmantel Jupiter Kometen Kosmochemie Ruthenium Wasser

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Stagnation im tiefen Südpazifik erklärt natürliche CO2-Schwankungen
23.02.2018 | Carl von Ossietzky-Universität Oldenburg

nachricht Birgt Mikroplastik zusätzliche Gefahren durch Besiedlung mit schädlichen Bakterien?
21.02.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics