Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wasser - der heimliche Treiber des Kohlenstoffkreislaufs?

17.01.2017

Aktuell nimmt die Landoberfläche etwa ein Viertel der anthropogenen Kohlendioxidemissionen aus der Atmosphäre wieder auf. Ob die Aufnahmefähigkeit dieser Kohlenstoffsenke erhalten bleibt und wie sie sich zukünftig weiterentwickeln wird, ist ungewiss. Wie sie reguliert wird, konnte nun eine Forschergruppe unter der Leitung des Max-Planck-Instituts für Biogeochemie näher beleuchten: Global gesehen werden jährliche Schwankungen der Kohlenstoffsenke vornehmlich durch die Temperatur bestimmt. Blickt man aber auf die lokale Ebene, so ist die Wasserverfügbarkeit der dominierende Faktor.

Die neue Studie zeigt auch, wie kompensierende Effekte der Wasserverfügbarkeit zu den Unterschieden zwischen lokalen und globalen Skalen führen.


Charakteristische Trockenperioden im Wechsel mit ausgiebigen Regenzeiten prägen die Savannen, wie hier in Ostafrika.

Bildautor: Ulla Trampert /pixelio.de

Der aktuell fortschreitende Klimawandel ist gekennzeichnet durch steigende Kohlendioxidkonzentrationen in der Atmosphäre, die mit einer globalen Erwärmung einhergehen. Der seit Jahrzehnten gemessene Anstieg von atmosphärischem CO₂ variiert allerdings erheblich von Jahr zu Jahr.

Diese Variationen haben ihre Ursache vor allem in Schwankungen in der Kohlenstoffaufnahme durch die Landökosysteme und weniger in einer veränderter Aufnahme durch die Ozeane oder in Schwankungen der anthropogenen Emissionen.

Wie wird diese Landsenke reguliert? Die Frage, ob eher die Temperatur oder das Wasser das Aufnahmevermögen der Landvegetation bestimmen, wird unter den Wissenschaftlern kontrovers diskutiert. Nach heutigem Wissensstand stehen die jährlichen, globalen Schwankungen des Kohlenstoffhaushalts in statistischem Zusammenhang mit tropischen Temperaturen.

Allerdings zeigen andere Untersuchungen, dass die stärksten Schwankungen in der Kohlenstoffaufnahme in großräumigen Gebieten auftreten, wo Wasserknappheit herrscht.

Dieser scheinbare Widerspruch konnte nun durch ein internationales Expertenteam unter der Leitung des Max-Planck-Instituts für Biogeochemie in Jena erklärt werden. In einem aktuellen Artikel des Wissenschaftsjournals Nature beschreiben Dr. Martin Jung und seine Teamkollegen, wie sie durch Kombination empirischer und prozessbasierter Computermodelle die Wirkung von Temperatur und Wasserverfügbarkeit auf den Kohlenstoffaustausch zwischen der Atmosphäre und der Landoberfläche auf unterschiedlichen Größenskalen analysierten.

Es zeigte sich, dass auf lokaler Ebene die Verfügbarkeit von Wasser entscheidend ist für die Jahr-zu-Jahr-Schwankungen der Kohlenstoffsenke. Die Wasserverfügbarkeit beeinflusst die Photosynthese, bei der Kohlendioxid aufgenommen wird und auch die Atmung der Pflanzen und Mikroorganismen, die wiederum CO₂ in die Atmosphäre abgeben. In der Summe wird der Nettoaustausch von CO₂ zwischen der Atmosphäre und der terrestrischen Biosphäre stark davon bestimmt, wieviel Wasser vorhanden ist. Eigenartigerweise werden auf globaler Ebene die Schwankungen im Nettoaustausch überwiegend durch die Temperatur reguliert.

“Was im ersten Moment als paradox erscheint, lässt sich mit einem Blick auf die verschiedenen räumlichen und zeitlichen Schwankungen im Zusammenspiel der Biosphäre und der Atmosphäre erklären“, erläutert Dr. Martin Jung, Erstautor der Veröffentlichung. „Es gibt zwei sich kompensierende Wasser-Effekte.“ Die stärkste Kompensation entsteht durch ungleichmäßig auftretende Auswirkungen von außergewöhnlichen Wasseranomalien. „Wenn es in einem Gebiet der Erde sehr trocken ist, ist es in anderen Gebieten sehr feucht, so dass sich weltweit wasserbedingte Anomalien im Netto-Austausch des Kohlenstoffs gegenseitig fast aufheben.“ Das Wasser ist also der eigentliche Treiber des Kohlenstoffkreislaufs, auch global gesehen.

Die Ergebnisse der Studie klären nicht nur die scheinbar widersprüchlichen Ergebnisse zur Frage, ob das Wasser oder die Temperatur die Stärke der Landsenke bestimmen. Sie zeigen auch, wie wichtig es ist, das Augenmerk auf die Abweichungen von Klimavariablen in unterschiedlichen Untersuchungsräumen zu richten. „Die schlichte Beziehung zwischen der Temperatur und der globalen Kohlenstoffsenke an Land sollte man mit Vorsicht betrachten“, resümiert Professor Markus Reichstein, Koautor der Untersuchungen und Direktor am Max-Planck-Institut für Biogeochemie, „sie sollte nicht für Rückschlüsse auf ökologische Prozesse oder gar Langzeitprognosen dienen.“

Originalveröffentlichung:
Jung, M. et al. (2017).Compensatory water effects link yearly global land CO₂ sink changes to tem-perature. doi: 10.1038/nature20780

Kontakt:
Dr. Martin Jung
Email: mjung@bgc-jena.mpg.de
Tel: +49 (0)3641- 57 6261

Prof. Dr. Markus Reichstein
Email: mreichstein@bgc-jena.mpg.de
Tel: +49 (0)3641- 57 6200

Susanne Héjja | Max-Planck-Institut für Biogeochemie
Weitere Informationen:
http://www.bgc-jena.mpg.de

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Der Salzwasser-Wächter auf der Darßer Schwelle
19.09.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie