Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 


Warmer soils release additional CO2 into atmosphere; Effect stabilizes over longer term

Warmer temperatures due to climate change could cause soils to release additional carbon into the atmosphere, thereby enhancing climate change – but that effect diminishes over the long term, finds a new study in the journal Nature Climate Change.

The study, from University of New Hampshire professor Serita Frey and co-authors from the University of California-Davis and the Marine Biological Laboratory, sheds new light on how soil microorganisms respond to temperature and could improve predictions of how climate warming will affect the carbon dioxide flux from soils.

The activities of soil microorganisms release 10 times the carbon dioxide that human activities do on a yearly basis. Historically, this release of carbon dioxide has been kept in check by plants' uptake of the gas from the atmosphere. However, human activities are potentially upsetting this balance.

Frey and co-authors Johan Six and Juhwan Lee of UC-Davis and Jerry Melillo of the Marine Biological Laboratory were curious how increased temperatures due to climate change might alter the amount of carbon released from soils. "While they're low on the charisma scale, soil microorganisms are so critically important to the carbon balance of the atmosphere," Frey says. "If we warm the soil due to climate warming, are we going to fundamentally alter the flux of carbon into the atmosphere in a way that is going to feed back to enhance climate change?"

Yes, the researchers found. And no.
The study examined the efficiency of soil organisms – how completely they utilize food sources to maintain their cellular machinery – depending upon the food source and the temperature under two different scenarios. In the first short-term scenario, these researchers found that warming temperatures had little effect on soils' ability to use glucose, a simple food source released from the roots of plants. For phenol, a more complex food source common in decomposing wood or leaves, soils showed a 60 percent drop in efficiency at higher temperatures.

"As you increase temperature, you decrease the efficiency – soil microorganisms release more carbon dioxide to the atmosphere – but only for the more complex food sources," Frey explains. "You could infer that as the soil warms, more carbon dioxide will be released into the atmosphere, exacerbating the climate problem."

That effect diminishes, however, in the second scenario, in which soils were warmed to 5 degrees Celsius above the ambient temperature for 18 years. "When the soil was heated to simulate climate warming, we saw a change in the community to be more efficient in the longer term," Frey says, lessening the amount of carbon dioxide the soils release into the atmosphere and, in turn, their impact on the climate. "The positive feedback response may not be as strong as we originally predicted."

The research team also examined how changes in soil microorganism efficiency might influence long term storage of carbon in soils as predicted by a commonly used ecosystem model. Models of this type are used to simulate ecosystem carbon dynamics in response to different perturbations, such as land-use change and climate warming. These models generally assume that efficiency is fixed and that it does not change with temperature or other environmental conditions. The team found a large effect on long-term soil carbon storage as predicted by the model when they varied carbon use efficiency in a fashion comparable to what they observed in their experiments. "There is clearly a need for new models that incorporate an efficiency parameter that is allowed to fluctuate in response to temperature and other environmental variables," Six says.

The researchers hypothesize that long-term warming may change the community of soil microorganisms so that it becomes more efficient. Organism adaptation, change in the species that comprise the soils, and/or changes in the availability of various nutrients could result in this increased efficiency.

This study was based on work done at the Harvard Forest Long-Term Ecological Research site in Petersham, Mass., where Frey and Melillo have been warming two sites – one 9 meters square, the other 36 meters square -- with underground cables for two versus 18 years. "It's like having a heating blanket under the forest floor," Frey says, "allowing us to examine how this particular environmental change—long-term soil warming—is altering how the soil functions."

The article, "The Temperature Response of Soil Microbial Efficiency and its Feedback to Climate," is published in the advanced online publication of Nature Climate Change on Jan. 20, 2013. To access the abstract or full text (subscribers only) of the article after the embargo lifts, use the digital object identifier (DOI) number 10.1038/NCLIMATE1796 at this link:

This work was supported by an NSF Faculty Early Career Development Award, the NSF Long-term Ecological Research (LTER) Program, a DOE National Institute for Climatic Change Research (NICCR) grant, and a Harvard Forest Bullard Fellowship to Frey.

Photographs available to download:
Caption: Serita Frey, professor of natural resources at the University of New Hampshire

Credit: Perry Smith, UNH Photographic Services
Caption: Research sites at the Harvard Forest Long-Term Ecological Research site in Petersham, Mass., where Frey and Melillo have been warming two sites with underground cables. The photo was taken during a January thaw on a 50-degree day; the heated plots, which had been snow-covered, melted before the unheated ones.

Credit: Alix Contosa, postdoctoral researcher at UNH
Caption: Serita Frey (left) collects samples with UMass-Amherst graduate student George Hamaoui at Harvard Forest.

Credit: Brian Godbois, research assistant at UNH
Caption: Collecting soil samples.
Credit: Courtesy of Serita Frey
Watch Serita Frey describe her research:

The University of New Hampshire, founded in 1866, is a world-class public research university with the feel of a New England liberal arts college. A land, sea, and space-grant university, UNH is the state's flagship public institution, enrolling 12,200 undergraduate and 2,300 graduate students.

Beth Potier | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Rapid plankton growth in ocean seen as sign of carbon dioxide loading
27.11.2015 | Johns Hopkins University

nachricht Revealing glacier flow with animated satellite images
26.11.2015 | European Geosciences Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tübinger Forscher entdecken neue Zelltypen im Gehirn

Untersuchung im Neocortex von Mäusen - Zusammenarbeit mit Wissenschaftlern aus Houston

Wissenschaftler aus Tübingen und Houston haben zahlreiche neue Zelltypen im Gehirn identifiziert. Im Neocortex von erwachsenen Mäusen führten sie erstmals eine...

Im Focus: Klimawandel: Forscher weisen dramatische Veränderung in den 1980er Jahren nach

Ende der 1980er Jahre erlebte die Erde eine dramatische Klimaveränderung. Sie umfasste die Tiefen der Ozeane ebenso wie die obere Atmosphäre und reichte vom Nord- bis zum Südpol. Ausgelöst durch den Ausbruch des Vulkans El Chichón in Mexico 1982 und verstärkt durch menschliches Handeln folgte daraus die größte Temperaturverschiebung der letzten 1.000 Jahre. Erstmals nachgewiesen hat dies ein internationales Forscherteam um Prof. Philip C. Reid von der Plymouth University und der Sir Alister Hardy Foundation for Ocean Science (UK). Die Ergebnisse wurden kürzlich in der Fachzeitschrift „Global Change Biology“ veröffentlicht.

Abrupte Klimaveränderungen haben oft dramatische Folgen für unseren Planeten. Dennoch sind sie in ihrer Art, ihrem Ausmaß und in ihrer Wirkungsweise meist nur...

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaik – vom Labor an die Fassade

Fraunhofer ISE demonstriert neue Zell- und Modultechnologien an der Außenfassade eines Laborgebäudes

Das Fraunhofer-Institut für Solare Energiesysteme ISE hat die Außenfassade eines seiner Laborgebäude mit 70 Photovoltaik-Modulen ausgerüstet. Die Module...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Alle Focus-News des Innovations-reports >>>



im innovations-report
in Kooperation mit academics

Bürger treffen Experten: Gespräch zu Chancen und Risiken der Nanotechnologie am 30.11.2015

27.11.2015 | Veranstaltungen

Arbeit in Sozialen Dienstleistungen - Welche Zukunft hat die Branche?

27.11.2015 | Veranstaltungen

Konzepte nutzergerechter Fahrerarbeitsplatzgestaltung

26.11.2015 | Veranstaltungen

Weitere VideoLinks >>>
Aktuelle Beiträge

Künstliche Herzklappe nach dem Vorbild der Natur

27.11.2015 | Förderungen Preise

Siemens liefert 126 Megawatt Onshore-Windleistung nach Schottland

27.11.2015 | Unternehmensmeldung

Hauptkläranlage Wien wird mit Siemens zum Ökokraftwerk

27.11.2015 | Energie und Elektrotechnik