Wandernde Kontinente schufen artenreiche Korallenriffs

Korallenriffe – hier das Great Barrier Reef – sind extrem artenreiche Lebensräume. Simon Gingins

Nirgends ist heute die Artenvielfalt an Korallen und riffbewohnenden Fischen grösser als in Südostasien – in den tropischen Gewässern um Indonesien und seiner Nachbarländer. «Wer den Grund für diese Vielfalt verstehen will, muss 100 Millionen Jahre zurückblicken – in eine Zeit, als das heutige Südamerika und Afrika noch einen gemeinsamen Grosskontinent bildeten und das heutige Indien eine Insel auf der Südhalbkugel der Erde war», sagt Loïc Pellissier, Professor für Landschaftsökologie an der ETH Zürich und der Eidgenössischen Forschungsanstalt für Wald, Schnee und Landschaft WSL. Bis vor zehn Monaten leitete er eine Forschungsgruppe an der Universität Freiburg (Schweiz).

Ein internationales Forscherteam unter seiner Leitung untersuchte mit einem Computermodell erstmals die geografischen Muster, nach denen sich in der Jahrmillionen dauernden Evolutionsgeschichte von Korallen und Riff-Fischen neue Arten herausgebildet haben. Damit zeigten die Wissenschaftler, dass mit grosser Wahrscheinlichkeit die erdgeschichtlichen Verschiebungen der Kontinentalplatten die treibenden Kräfte waren hinter der Artbildung.

Kombination verschiedener Modelle

Um zu diesem Schluss zu kommen, kombinierten die Forschenden verschiedene Simulationsrechnungen und Daten. Dazu gehören eine Simulation der erdgeschichtlichen Veränderungen des Meeresbodens sowie Informationen zur früheren Ausdehnung der Tropen, die auf Funden von Fossilien tropischer Korallenarten basieren. So erstellten sie ein dynamisches räumliches Modell, das angibt, wo sich im Laufe der Erdgeschichte seichte und warme Gewässer befanden, in denen Korallen und andere tropische Lebewesen einen Lebensraum fanden.

In dieses Modell integrierten sie einen bekannten Mechanismus der Evolution, nach dem sich aus einer bestehenden Tierart zwei neue bilden. Als Veranschaulichungsbeispiel soll eine beliebige Fischart dienen, die vor 100 Millionen Jahren in einem tropischen Korallenriff lebte. Teilt sich ihr Heimatriff beispielsweise wegen Kontinentalverschiebungen in zwei voneinander getrennte Riffs, entwickeln sich die Populationen in diesen Gebieten unabhängig voneinander weiter. Über die nachfolgenden Hunderttausende von Jahren können sich so zwei neue Arten herausbilden.

Hotspot im Ur-Ozean

Eine solche Fragmentierung der tropischen Lebensräume fand tatsächlich statt, wie Pellissier und seine Kollegen in ihren Modellrechnungen zeigten. Ihre Simulation beginnt vor 140 Millionen, als das heutige Südamerika, Afrika, Indien und Australien gemeinsam den Grosskontinent Gondwana bildeten. Seinen äquatorseitigen Küsten entlang gab es ein riesiges zusammenhängendes seichtes Gewässer. In den folgenden Jahrmillionen brach der Grosskontinent auf. Es kam zu massiven Kontinentalverschiebungen und zu einer Fragmentierung der tropischen Gewässer.

Besonders stark war diese Fragmentierung vor 50 bis 60 Millionen Jahren, wie Fabien Leprieur, Professor an der Universität Montpellier und Erstautor der Studie, sagt: «Im westlichen Teil der Tethys, des Ur-Ozeans zwischen Afrika und Eurasien, gab es damals eine komplexe Meeresbodenstruktur mit vielen voneinander separierten seichten Gewässern – einen eigentlichen Flickenteppich.» Die plattentektonischen Vorgänge zu jener Zeit trennten und vereinigten diese Gewässer, es war ein äusserst dynamisches System, das die Artbildung stark begünstigte.

Dass die West-Tethys Region damals ein Hotspot der Artbildung war, ist von Fossilienfunden bekannt. Diese Funde zeigen auch, dass sich dieser Hotspot in den vergangenen 60 Millionen Jahren von der Tethys ins heutige Südostasien verschoben hat. «Unsere Modelle geben nun erstmals eine Erklärung für diese Verschiebung», so Pellissier. «Wegen den plattentektonischen Vorgängen entstanden im Verlauf der Jahrmillionen an verschiedenen Orten neue Lebensräume, andere vereinigten sich oder verschwanden. Diese dynamischen Strukturen förderten die Verschiebung des Artbildungs-Zentrums», so der Landschaftsökologie-Professor.

Vereinigung der Fauna Australiens und Asiens

Die heutige Artenvielfalt in Südostasien ist jedoch nicht ausschliesslich in dieser Wanderbewegung begründet. Vielmehr traf sich dort vor rund 15 Millionen Jahren auch die Meeresfauna der Tethys mit jener Australiens. Diese Begegnung war ebenfalls begünstigt durch die Kontinentalverschiebung, in diesem Fall durch die Verschiebung der australischen Kontinentalplatte Richtung Äquator, wie Pellissier und seine Kollegen zeigen. «Für landlebende Tiere und Pflanzen war diese australoasiatische Begegnung schon bekannt. Wir zeigen jetzt auf, dass es sie auch für tropische Meereslebewesen gab.»

Korallenriffe, welche im Fokus dieser Studie stehen, sind temperaturempfindlich und wegen der Klimaerwärmung weltweit in Gefahr: Das Great Barrier Reef in Australien erlebt derzeit die grösste Korallenbleiche seiner Geschichte. Pellissier: «In diesem Zusammenhang ist es wichtig zu verstehen, dass die heutigen Riff-Ökosysteme eine sehr lange Geschichte haben. Es brauchte 100 Millionen Jahre, um die ausserordentlich grosse Artenvielfalt aufzubauen, möglicherweise dauert es aber weniger als 100 Jahre, sie zu zerstören.»

Literaturhinweis
Leprieur F et al.: Plate tectonics drive tropical reef biodiversity dynamics. Nature Communications, 6. Mai 2016, doi: 10.1038/ncomms11461

Video: https://youtu.be/uGuKB0a_vyY
Videolegende: Simulation der vergangenen 60 Millionen Jahre. Das Artenreichtum seichter tropischer Riffs ist gelb bis rot markiert. Je stärker rot, desto mehr Arten lebten dort (entsprechend den Simulationen). (Video: Patrice Descombes und Loïc Pellissier)

Media Contact

News und Medienstelle Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Weitere Informationen:

http://www.ethz.ch

Alle Nachrichten aus der Kategorie: Geowissenschaften

Die Geowissenschaften befassen sich grundlegend mit der Erde und spielen eine tragende Rolle für die Energieversorgung wie die allg. Rohstoffversorgung.

Zu den Geowissenschaften gesellen sich Fächer wie Geologie, Geographie, Geoinformatik, Paläontologie, Mineralogie, Petrographie, Kristallographie, Geophysik, Geodäsie, Glaziologie, Kartographie, Photogrammetrie, Meteorologie und Seismologie, Frühwarnsysteme, Erdbebenforschung und Polarforschung.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Transparente emissive Mikrodisplays

… für ultraleichte und kompakte Augmented-Reality-Systeme. Im Rahmen des Projektes HOT („Hochperformante transparente und biegbare Mikro-Elektronik für photonische und optische Anwendungen“) haben Forschende des Fraunhofer-Instituts für Photonische Mikrosysteme IPMS ein…

Partner & Förderer