Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Vulkanologie: Bläschen führen zum Deaster

14.04.2016

Warum interessieren sich Vulkanologen für Dampfblasen? Weil sich diese in einer Magmakammer unter einem Vulkan anreichern und ihn für einen Ausbruch scharfmachen. Forscher der ETH Zürich und des Georgia Institute of Technology haben nun herausgefunden, wie sich Blasen in der Magma anreichern können.

Im Jahr 1816 blieb in Mitteleuropa der Sommer aus. Die Menschen litten Hunger. Ein Jahr zuvor war in Indonesien der Vulkan Tambora ausgebrochen. Er schleuderte grosse Mengen Asche und Schwefel in die Atmosphäre. Diese Partikel blockierten das Sonnenlicht und kühlten dadurch das Klima. Dies wirkte sich auch in der Schweiz gravierend auf Land und Leute aus.


Vulkan Tambora auf Sumbawa: Sein explosiver Ausbruch vor 200 Jahren kühlte vorübergehend das Klima und führte zu einem Jahr ohne Sommer.

Bild: JialiangGao / Wikimedia Commons CC BY-SA 3.0)

Vulkanologen haben mittlerweile eine ziemlich genaue Vorstellung davon, weshalb Supervulkane wie der Tambora nicht nur sehr explosiv sind, sondern auch weshalb sie so viel Schwefel freisetzen: In der obersten Schicht einer Magmakammer, die nur wenige Kilometer tief unter der Erdoberfläche liegt, können sich Gasblasen anreichern. Dadurch baut sich Druck auf, der sich durch den Vulkanausbruch schlagartig abbaut. In diesen Blasen ist vor allem Wasserdampf eingeschlossen, aber auch Schwefel.

Schwefelreiche Ausbrüche

«Solche Ausbrüche von Vulkanen können gewaltig sein, und sie fördern enorm viel Asche und Schwefel an die Oberfläche und in die Atmosphäre», sagt Andrea Parmigiani, Postdoc am Institut für Geochemie und Petrologie der ETH Zürich. «Wir wissen zwar schon länger, dass Gasblasen dabei eine grosse Rolle spielen, wie sich diese jedoch in Magmakammern anreichern, darüber konnten wir bisher nur spekulieren.»

Der Forscher hat deshalb mit weiteren Wissenschaftlern der ETH Zürich und des Georgia Institute of Technology (Georgia Tech) das Verhalten der Bläschen mit einem Computermodell studiert. Die Wissenschaftler haben theoretische Berechnungen und Laborexperimente angestellt und dabei insbesondere untersucht, wie sich Blasen in kristallreichen und kristallarmen Schichten der Magmakammer nach oben bewegen. In vielen Vulkansystemen besteht die Magmakammer zur Hauptsache aus zwei Zonen: Eine obere Schicht, bestehend aus zähflüssiger kristallarmer Schmelze, und eine untere, die reich ist an Kristallen und Poren.

Superblasen schlängeln sich durch Labyrinth

Zu Beginn des Projekts gingen Parmigiani sowie Christian Huber vom Georgia Tech und Olivier Bachmann von der ETH davon aus, dass der Aufstieg der Blasen in kristallreichen Zonen des Magmareservoirs stark verlangsamt wird. In kristallarmen Bereichen jedoch sollten die Blasen schneller aufsteigen. «Stattdessen haben wir herausgefunden, dass Blasen in kristallreichen Zonen schneller aufsteigen, wenn gleichzeitig auch der Anteil an flüchtigen Stoffe hoch ist. Sie reichern sich hingegen in darüber liegenden, schmelzenreichen Abschnitten der Magmakammer an», sagt Parmigiani.

Er erklärt sich dies so: Nimmt der Anteil an Blasen in den Poren der kristallreichen Schicht zu, verschmelzen einzelne kleine Blasen zu fingerartigen Kanälen. Diese nehmen Fahrt auf und verdrängen dabei im Porenraum vorhandene hoch viskose Schmelze. Diese fingerartigen Kanäle ermöglichen es dem darin enthaltenen Gas schneller aufzusteigen. Die Blasen müssen dazu allerdings mindestens zehn bis fünfzehn Prozent des Porenraums ausfüllen. «Können sich diese Dampfkanäle nicht bilden, bleiben Einzelblasen mechanisch gefangen», sagt der Forscher.

Gelangen die fingerartigen Kanäle an die Grenze zur kristallarmen Schmelze lösen sich kugelige Einzelblasen ab. Diese steigen zwar weiter zur Oberfläche auf, ihre Wandergeschwindigkeit verringert sich jedoch, je mehr Blasen am Aufsteigen sind. Der Grund: Jede Blase schiebt eine Bugwelle zähflüssiger Schmelze vor sich her und drückt diese beiseite. Gelangt die benachbarte Blase in den Bereich dieses rückwärts gerichteten Schmelzenflusses, wird sie gebremst.

Diesen Vorgang konnten Parmigianis Kollegen Salah Faroughi und Christian Huber mit einem Labor-Experiment am Georgia Tech aufzeigen. Sie verwendeten dazu Wasserblasen, die in einer zähflüssigen Silikonlösung aufsteigen.

Blasen bauen hohen Druck auf

«Durch diesen Mechanismus können sich sehr viele Gasblasen in der kristallarmen Schmelze unter dem Dach der Magmakammer anreichern. Das führt schliesslich zu einem Überdruck in der Kammer», sagt Parmigiani. Und weil die Blasen auch Schwefel enthalten, werde dieser mitangereichert. So könne man erklären, weshalb ein solcher Vulkan mehr Schwefel ausstosse, als aufgrund der Gesteinszusammensetzung zu erwarten sei.

Was dies für die Explosivität eines bestimmten Vulkans bedeutet, ist allerdings noch unklar. «Diese Studie konzentriert sich auf die Grundlagen des Gasflusses in einer Magmakammer. Einen direkte praktische Anwendung wie die Voraussage des Verhaltens eines Vulkans bleibt Gegenstand zukünftiger Forschung», sagt der Forscher.

Computermodelle bilden nicht die ganze Magmakammer ab, sondern nur einen winzigen Ausschnitt davon; einen Quader von wenigen Kubikzentimetern, der eine scharfe Grenze zwischen kristallarmer und kristallreicher Schicht aufweist. Nur schon um dieses kleine Volumen zu berechnen, benutzte Parmigiani Hochleistungsrechner wie den Euler-Cluster an der ETH Zürich und einen Supercomputer am Nationalen Hochleistungsrechenzentrum CSCS in Lugano.

Die Software, die Parmigiani verwendete, stammt aus der Open Source-Bibliothek Palabos, die er in Zusammenarbeit mit Forschenden der Universität Genf weiterentwickelt. «Diese Software ist für diese Art von Simulationen besonders geeignet», sagt der Physiker.

Literaturhinweis

Parmigiani A, Faroughi S, Huber C, Bachmann O, Su Y. Bubble accumulation and its role in the evolution of magma reservoirs in the upper crust. Nature, Advanced Online Publication 13th April 2016. doi:10.1038/nature17401

Weitere Informationen:

https://www.ethz.ch/de/news-und-veranstaltungen/eth-news/news/2016/04/blasen-anr...

Peter Rüegg | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Weitere Berichte zu: Asche Atmosphäre Blase Blasen Bläschen ETH Gasblasen Magmakammer Schmelze Software Vulkan Vulkanologie

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Warum der Meeresboden in Bewegung gerät
13.02.2018 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

nachricht Erste Messung der Erdgravitation mit einer transportablen optischen Uhr
12.02.2018 | Physikalisch-Technische Bundesanstalt (PTB)

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Im Focus: Quantenbits per Licht übertragen

Physiker aus Princeton, Konstanz und Maryland koppeln Quantenbits und Licht

Der Quantencomputer rückt näher: Neue Forschungsergebnisse zeigen das Potenzial von Licht als Medium, um Informationen zwischen sogenannten Quantenbits...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Das VLT der ESO arbeitet erstmals wie ein 16-Meter-Teleskop

Erstes Licht für das ESPRESSO-Instrument mit allen vier Hauptteleskopen

Das ESPRESSO-Instrument am Very Large Telescope der ESO in Chile hat zum ersten Mal das kombinierte Licht aller vier 8,2-Meter-Hauptteleskope nutzbar gemacht....

Im Focus: Neuer Quantenspeicher behält Information über Stunden

Information in einem Quantensystem abzuspeichern ist schwer, sie geht meist rasch verloren. An der TU Wien erzielte man nun ultralange Speicherzeiten mit winzigen Diamanten.

Mit Quantenteilchen kann man Information speichern und manipulieren – das ist die Basis für viele vielversprechende Technologien, vom hochsensiblen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Auf der grünen Welle in die Zukunft des Mobilfunks

16.02.2018 | Veranstaltungen

Smart City: Interdisziplinäre Konferenz zu Solarenergie und Architektur

15.02.2018 | Veranstaltungen

Forschung für fruchtbare Böden / BonaRes-Konferenz 2018 versammelt internationale Bodenforscher

15.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erste integrierte Schaltkreise (IC) aus Plastik

17.02.2018 | Energie und Elektrotechnik

Stammbaum der Tagfalter erstmalig umfassend neu aufgestellt

16.02.2018 | Biowissenschaften Chemie

Neue Strategien zur Behandlung chronischer Nierenleiden kommen aus der Tierwelt

16.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics