Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Vulkankessel auf Island bricht Rekorde

15.07.2016

Der Ausbruch des isländischen Vulkans Bárdarbunga war der stärkste seit mehr als 240 Jahren in Europa. Das Loch, das er hinterließ – die so genannte Caldera –, ist der größte Caldera-Einbruch, der je direkt beobachtet wurde. Und die Eruption wurde so genau untersucht wie kein anderer Ausbruch je zuvor. Mit dabei waren mehrere Wissenschaftler des Deutschen GeoForschungsZentrums GFZ, die gemeinsam mit dem Erstautor Magnus T. Gudmundsson (University of Iceland) und Kollegen jetzt in der Fachzeitschrift SCIENCE ihre Ergebnisse vorstellen. Es gab einige Überraschungen und Glück im Unglück.

Der Ausbruch des isländischen Vulkans Bárdarbunga hat vor gut zwei Jahren viele Rekorde gebrochen: Es war der stärkste seit mehr als 240 Jahren in Europa. Das Loch, das er hinterließ – die so genannte Caldera –, ist der größte Caldera-Einbruch, der je direkt beobachtet wurde.


Der Bardabunga-Ausbruch auf Island spie mehr als zwei Kubikkilometer glühendes Gestein und Asche aus.

Foto: GFZ


Der Bardabunga-Ausbruch auf Island hinterließ eine riesige Caldera, seine Aschewolke blieb aber ungefährlich.

Foto: GFZ

Und: Forscherinnen und Forscher haben die Eruption so genau untersucht wie keinen anderen Ausbruch je zuvor. Mit dabei waren mehrere Wissenschaftler des Deutschen GeoForschungsZentrums GFZ, die gemeinsam mit dem Erstautor Magnus T. Gudmundsson (University of Iceland) und Kollegen jetzt in der Fachzeitschrift SCIENCE ihre Ergebnisse vorstellen.

Von August 2014 bis Februar 2015 entstand im Zentrum von Island die Bárdarbunga-Caldera als Folge des größten europäischen Vulkanausbruchs seit 1784. Calderen sind kesselförmige vulkanische Strukturen mit einem Durchmesser von einem Kilometer bis zu 100 Kilometern. Sie entstehen durch den Einsturz oberflächennaher Magmakammern während einer Vulkaneruption.

Da ihre Entstehung selten ist, ist auch das Wissen über sie nur sehr begrenzt. Als Teil eines internationalen Teams haben GFZ-Wissenschaftler der Sektion Erdbeben- und Vulkanphysik die Entstehung der Caldera genau dokumentiert. Sie nutzten dafür unter anderem Satellitenbeobachtungen, seismologische und geochemische Daten sowie GPS-Informationen und Modellrechnungen.

Grund für die Absenkung war das unterirdische Ausfließen von Magma aus einem Reservoir in einer Tiefe von 12 Kilometern. Die Magmakammer leerte sich über einen langen, unterirdischen Kanal im Gestein und brach als Lavafluss im Nordosten des Vulkans, 45 Kilometer entfernt, an die Oberfläche. Begleitet wurde das Absinken von 77 Erdbeben mit Magnituden von mehr als M 5.

In ihrer Studie zeigen die WissenschaftlerInnen, wie die Bodensenkung sich innerhalb von sechs Monaten bis auf eine Größe von acht mal elf Kilometern ausdehnt und dabei 65 Meter hinunterrutscht. „Mit einer Fläche von etwa 110 Quadratkilometern ist dies der größte Caldera-Einbruch, der je instrumentell beobachtet wurde. Die Ergebnisse liefern das bisher deutlichste Bild von Ursprung und Entwicklung dieses rätselhaften geologischen Prozesses”, sagt Dr. Eoghan Holohan, der die Modellierungsarbeiten am GFZ aus den gewonnenen Daten geleitet hat.

Dr. Sebastian Heimann vom Deutschen GeoForschungsZentrum untersuchte die Ursprungsmechanismen des Absenkens mit seismologischen Methoden: „Die typische Struktur von Erdbebenwellen bei Vulkanausbrüchen lässt sich nutzen, um daraus die Vorgänge in der Tiefe, direkt über der Magmakammer, abzuleiten.“ Sein Resultat: der Untergrund besteht aus steil abfallenden Ringstrukturen im Gestein, die das Absenken in der Tiefe gesteuert haben.

Eine weitere Überraschung für die Geoforscher war das Verhalten des Magmas im erwähnten langen Kanal: „Interessant ist, dass der Ausbruchsort und die 45 Kilometer entfernte Magmakammer hydraulisch gekoppelt waren“, erläutert Dr. Thomas Walter (GFZ). Das könne man sich vorstellen wie eine riesige Schlauchwaage, nur eben nicht mit Wasser, sondern mit Magma gefüllt. Erschütterungen am Ausbruchsort pflanzten sich dann ans andere Ende in die Magmakammer fort und umgekehrt.

Diese Kammer liegt unter dem größten Gletscher Europas, dem Vatnajökull, und die Absenkung selbst war mit Eis gefüllt. Thomas Walter sagt: „Das war auch Glück im Unglück. Wäre der Ausbruch direkt unter dem Eisschild erfolgt, hätte es zu einer Wasserdampfexplosion kommen können. Dann wären wir vielleicht mit einer noch deutlich größeren und länger andauernden Aschewolke konfrontiert gewesen als seinerzeit beim Ausbruch des Vulkans Eyjafjallajökull im Jahr 2010.“ Denn der Bárdarbunga-Ausbruch 2014/2015 spie über zwei Kubikkilometer glühendes Gestein aus, fast zehnmal mehr als der Eyjafjallajökull.

Die Geoforscher erhoffen sich aus den Daten Einblicke in die bisher weitgehend unerforschten Vorgänge der Entstehung solcher Calderen. Die damit verbundenen Ausbrüche von Vulkanen können noch viel größere Ausmaße annehmen. Sie sind zwar selten, haben aber dafür enorme Folgen. Gewaltige Entladungen können beispielsweise unter dem Yellowstone oder in den Anden entstehen – mit weltweiten Auswirkungen.

Vor genau 200 Jahren führten der Ausbruch des indonesischen Vulkans Tambora und der damit verbundene Einsturz seiner Magmakammer zu einer weltweit messbaren Druckwelle in der Atmosphäre und zu einem gewaltigen Tsunami. In der Folge verursachten die in der Stratosphäre schwebenden Aerosole und Asche weltweit das „Jahr ohne Sommer“ 1816.

Titel der Studie:
Gudmundsson, Magnus T. et al.: Gradual caldera collapse at Bárdarbunga volcano, Iceland, regulated by lateral magma outflow. Science, 15. Juli 2016

Josef Zens | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ
Weitere Informationen:
http://www.gfz-potsdam.de/

Weitere Berichte zu: Absenkung Einsturz Eyjafjallajökull GFZ Gestein Helmholtz-Zentrum Magma Magmakammer Magnus

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Stärkere Belege für Abschwächung des Golfstromsystems
12.04.2018 | Potsdam-Institut für Klimafolgenforschung

nachricht Waldbrände in Kanada sorgen für stärkste jemals gemessene Trübung der Stratosphäre über Europa
12.04.2018 | Leibniz-Institut für Troposphärenforschung e. V.

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nachhaltige und innovative Lösungen

19.04.2018 | HANNOVER MESSE

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungsnachrichten

Auf dem Weg zur optischen Kernuhr

19.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics