Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Von der Kruste in den Mantel und zurück

19.01.2015

Uran-Isotope hinterlassen in Vulkangesteinen einen eindeutigen «Fingerabdruck», mit dem sich das Alter und die Herkunft dieser Gesteine bestimmen lässt. Geologinnen und Geologen haben nun anhand dieser Uran-Isotope neue Erkenntnisse darüber gewonnen, wie das Recycling von Erdkruste vor sich geht.

Uran und seine Isotope haben sich dank ihrer langen Halbwertszeiten als ideale Spurenelemente entpuppt, anhand derer Geologen die Entwicklung der Erdoberfläche rekonstruieren können.


Die Simulation verdeutlicht, wie Krustenmaterial (blau) und damit Uran in den Erdmantel (orange) subduzieren. (Bild: ETH Zürich/ Geophysical Fluid Dynamics)

Eine neue Studie über den Kreislauf der verschiedenen Uranspezies bringt weitere Aspekte in die Debatte darüber ein, wie sich das Gesicht der Erde über die Jahrmilliarden verändert hat. Uran ist seit Anbeginn der Zeit Bestandteil der Erde.

Einerseits bestehen von Uran mehrere Isotope, wie Uran-238 und das leichtere Uran-235. Je nach Umweltbedingungen liegt Uran aber auch in verschiedenen Oxidationsstufen vor: In einer sauerstofflosen Umgebung, wie sie auf der jungen Erde herrschte, als vierfach positiv geladenes Uran(IV), sowie als sechsfach positiv geladenes Uran(VI), nachdem Sauerstoff entstanden war und Uran(IV) oxidierte.

Diese verschiedenen Oxidationsformen und Isotope von Uran helfen nun Geologen, die Veränderungen der Erdoberfläche und die Wiederverwertung von Krusten über den Lauf der vergangenen Milliarden nachzuvollziehen, wie sie in einer eben in der Fachzeitschrift Nature veröffentlichten Studie aufzeigen.

«Uran ist aufgrund seiner extrem langen Halbwertszeit von vier Milliarden Jahre eines der wenigen Elemente, mit dem wir die Frühgeschichte der Erde rekonstruieren können», sagt Morten Andersen, Geochemiker am Departement Erdwissenschaften der ETH Zürich.

Uranisotope bilden spezifische Signaturen

Für ihre Studie nutzte eine Gruppe von Erdwissenschaftlern der ETH Zürich sowie der Universitäten Bristol, Wyoming, Durham und Rhode Island den «Fingerabdruck», welchen die verschiedenen Uranisotope und Oxidationsformen in Vulkangesteinen hinterlassen. Diese Signaturen sind typisch für gewisse Erdzeitalter und für bestimmtes Erdkrustenmaterial, das durch Subduktion in den Mantel abtauchte und dort rezykliert wurde.

Um den Urankreislauf (und den Gesteinskreislauf) zu untersuchen, analysierten die Forscher Basalte aus dem Bereich von mittelozeanischen Rücken, so genannte MORBs (Mid-ocean ridge basalts). An diesen Stellen driften ozeanische Krusten auseinander, sodass an der Nahtstelle relativ junges vulkanisches Material aus dem oberen Erdmantel austritt. Die Urananteile von MORBs verglichen sie mit denen von Basalten, die von Ozeaninseln wie Hawaii oder den Kanaren stammen. Diese Inseln liegen inmitten von Platten und wurden wohl von Magmasäulen, den Mantelplumes, gebildet. Diese fördern Material aus dem Grenzbereich von Erdkern und Erdmantel an Oberfläche. Es ist viel älter als dasjenige der MORBs und dürfte ein bis zwei Milliarden Jahre alt sein.

Zum Vergleich bestimmten die Forschenden überdies die Verhältnisse der Uranisotope von Meteoriten, die aus dem gleichen Ausgangsmaterial wie die Erde bestehen und damit die ursprüngliche Uran-Komposition der Kruste aufweisen.

Schweres Uran bleibt oben

Das Isotopenverhältnis von Uran-238 zu Uran-235 war bei MORBs deutlich grösser als bei Inselbasalten. Auch war das Verhältnis höher als dasjenige von Meteoriten. Das spricht laut Andersen dafür, dass das in MORBs enthaltene Uran sowohl auf dem Land als auch im Wasser Kontakt mit Sauerstoff hatte und sich demnach zu einer Zeit veränderte, als sowohl Atmosphäre als auch Wasser mit dem Gas versorgt waren. Erst danach wurde die ozeanische Kruste, welche das veränderte Uran aufgenommen hatte, durch Subduktion in den oberen Mantel gezogen. Durch die Konvektion, also die walzenförmige Bewegung im oberen Mantel, wurde dieses Plattenmaterial schliesslich in den Bereich der mittelozeanischen Rücken transportiert und als MORB zurück an die Oberfläche befördert.

Den höheren Anteil von Uran-238 in den MORBs erklärt der Mitautor der Studie, Heye Freymuth von der Universität Bristol, wie folgt: «Unterschiede im Isotopen-Verhältnis bilden sich vor allem dann, wenn Uran in beiden Oxidationsgraden, also als Uran(IV) und Uran(VI), vorliegen kann. Dies war nach dem ersten Anstieg des Sauerstoffgehalts vor rund 2,4 Milliarden Jahren auf der Erdoberfläche jedoch nicht möglich, weil die Ozeane noch nicht ausreichend mit Sauerstoff versorgt waren.»

Im Vergleich zu den Bedingungen von vor 600 Millionen Jahren beim zweiten markanten Anstieg des Sauerstoffgehalts habe sich vor allem die Tatsache geändert, dass Veränderungen der ozeanischen Kruste am Meeresboden unter oxidierten Bedingungen zum bevorzugten Einbau von Uran-238 geführt hätten, während sich das leichtere Uran-235 im Meerwasser anreicherte.

Zwar sei weiterhin ozeanische Kruste in den Erdmantel transportiert worden, aber – verursacht durch die Oxidation der Ozeane – zum erstem Mal mit einem Uranisotopenverhältnis, das sich von dem des Erdmantels unterschied.

Uralte Inselbasalte

Anders die Inselbasalte. Ihr Verhältnis von Uran-238 zu Uran-235 entsprach demjenigen der Vergleichsmeteoriten. Dies erklären die Forscher damit, dass alte ozeanische Kruste, die kein oder nur wenig Sauerstoffkontakt hatte, im Lauf der Zeit in den unteren Mantel gelangte. Die Messungen der Uranisotopen an Inselbasalten ergaben, dass diese Gesteine nicht von jungen subduzierten Ozeankrusten stammen können. Die Quellen dieser Vulkangesteine müssen demnach älter sein als 600 Millionen Jahre. Bisherige Modelle gaben das Alter dieser Quellen im tiefen Erdmantel mit 1,8 bis 2,4 Milliarden Jahre an. Durch die Messung der Uranisotope in Inselbasalten konnte das Forschungsteam dieses Alter nun zum ersten Mal durch Daten belegen.

Heisse Debatte über Frühzeit der Erde

Die Studie über den Uran- und damit den Krustenkreislauf bringt neue Aspekte in die Debatte darüber ein, wie sich das Gesicht der Erde über die Jahrmilliarden verändert hat. «Für die Erdwissenschaftler ist dies eine der heissesten aktuellen Forschungsfragen», betont Andersen. Besonders lebhaft debattieren Fachleute, wie sich die Sauerstoffkonzentration in der Atmosphäre entwickelt hat. Denn damit hängen auch viele geologische Verwitterungsprozesse zusammen – auch das Schicksal des Urans.

«Ein wichtiges Resultat dieser Studie ist, wie verändernde Bedingungen an der Erdoberfläche und die Zunahme von Sauerstoff in der Atmosphäre die Zusammensetzung der tiefen Erde beeinflussen. Unsere Resultate lassen vermuten, dass Uran aufgrund der Veränderungen in den vergangenen 600 Mio. Jahren von der Oberfläche mobilisiert, ins Erdinnere transportiert und im Mantel verbreitet wurde», sagt Andersen.

Die vorliegende Studie sei vor allem Grundlagenforschung. Die gefundenen Uranisotopen-Signaturen könnten jedoch wirtschaftlich dafür genutzt werden, um unbekannte Uranvorkommen aufzuspüren. Das Forschungsgebiet sei jedoch noch recht jung und bedürfe weiterer Studien. Die erste grundlegende wissenschaftliche Arbeit über das Isotopenverhältnis U-238 zu U-235 ist erst 2007 veröffentlicht worden. Diese zeigte das Potential von Uranisotopen auf. Die Studie von Andersen und Kollegen ist die erste, die das Uranisotopenverhältnis für die Untersuchung magmatischer Gesteine nutzt und auf Recyclingprozesse in der tiefen Erde anwendet.

Literaturhinweis

Andersen MB, Elliott T, Freymuth H, Sims KWW, Niu Y, Kelley KA. The terrestrial uranium isotope cycle. Nature, published online 15. January 2015. DOI: 10.1038/nature14062

Weitere Informationen:

http://www.ethz.ch/de/news-und-veranstaltungen/eth-news/news/2015/01/uran-cyclin...

Peter Rüegg | ETH Zürich

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Was macht Korallen krank?
08.12.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Neue Weltkarte zeigt Karstgrundwasserleiter
04.12.2017 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Im Focus: Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten

Mit neuartigen Experimenten enträtseln Forscher des Helmholtz-Zentrums Geesthacht und der Technischen Universität Hamburg, warum winzige Metallstrukturen extrem fest sind

Ultraleichte und zugleich extrem feste Werkstoffe – poröse Nanomaterialien aus Metall versprechen hochinteressante Anwendungen unter anderem für künftige...

Im Focus: Geburtshelfer und Wegweiser für Photonen

Gezielt Photonen erzeugen und ihren Weg kontrollieren: Das sollte mit einem neuen Design gelingen, das Würzburger Physiker für optische Antennen erarbeitet haben.

Atome und Moleküle können dazu gebracht werden, Lichtteilchen (Photonen) auszusenden. Dieser Vorgang verläuft aber ohne äußeren Eingriff ineffizient und...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einmal durchleuchtet – dreifacher Informationsgewinn

11.12.2017 | Physik Astronomie

Kaskadennutzung auch bei Holz positiv

11.12.2017 | Agrar- Forstwissenschaften

Meilenstein in der Kreissägetechnologie

11.12.2017 | Energie und Elektrotechnik