Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Warum wie viel Wasser die Flüsse hinab fließt

22.10.2008
Der Mensch verändert zunehmend die Menge Wasser, die vom Land ins Meer oder in Binnengewässer fließt. Berechnungen mit einem Computermodell der Vegetation und des Wasserhaushalts der Erde zeigen, dass im 20. Jahrhundert der Niederschlag die globale Abflussmenge bestimmt hat.

Regional variiert der Abfluss dagegen mit Faktoren wie der Landnutzung und Bewässerung, der Temperatur oder der Konzentration des Treibhausgases Kohlendioxid (CO2), berichten Forscher vom Potsdam-Institut für Klimafolgenforschung (PIK) in der Fachzeitschrift "Geophysical Research Letters".

Der Einfluss dieser vor allem von menschlichen Aktivitäten abhängenden Faktoren auf den Abfluss und damit auf die Verfügbarkeit von Wasser wird künftig wahrscheinlich noch stärker werden.

"Wie stark die steigende CO2-Konzentration den im Laufe des 20. Jahrhunderts leicht zunehmenden Abfluss beeinflusst hat, wird in der Wissenschaft diskutiert", sagt Dieter Gerten, der leitende Autor der aktuellen Studie. Mit dem globalen dynamischen Vegetationsmodell LPJmL ("Lund-Potsdam-Jena managed Land") hat das Team um Gerten nun die Auswirkungen von Veränderungen des Klimas, der CO2-Konzentration sowie der Landbedeckung und -nutzung auf den Abfluss untersucht. "Die Modellierung zeigt, dass eine Zunahme des globalen Niederschlags der dominierende Faktor für den Abflussanstieg war", sagt der Geograph und Hydrologe.

Die Wissenschaftler haben das Vegetationsmodell unter anderem mit Klimadaten der Climatic Research Unit (CRU) der britischen University of East Anglia in Norwich gefüttert, einem Standard-Datensatz für globale Modellierungen. Die Simulationen zeigen, dass sich die Abflussmengen im Laufe des letzten Jahrhunderts in vielen Regionen der Welt deutlich verändert haben. Übereinstimmend mit Messungen nahmen sie in Nord- und Westafrika, Mittel- und Osteuropa sowie in Teilen Südasiens ab. In Teilen Sibiriens, Nordamerikas und Südamerikas nahmen sie dagegen zu.

Die globale Jahresabflussmenge, sie liegt etwa zwischen 35.000 und 40.000 Kubikkilometern, nahm unter Berücksichtigung der CRU-Klimadaten im vergangenen Jahrhundert um 7,7 Prozent zu, berichten die Forscher. Nach Schätzungen fallen jährlich zwischen 95.000 und 110.000 Kubikkilometer Niederschlag auf die Landoberfläche der Erde. Da sich die regionalen Niederschlagsmengen und ihre Trends jedoch zwischen verschiedenen Klimadatensätzen unterscheiden und andere Datensätze keinen eindeutigen globalen Niederschlagstrend zeigen, bleibt unklar, ob es derzeit eine globale Abflusserhöhung gibt.

Nach dem Niederschlag hatte die Landnutzung die deutlichsten Auswirkungen auf die Abflussmenge. Im Verlauf des vergangenen Jahrhunderts erhöhte der Mensch durch Umgestaltung natürlicher Flächen, vor allem Rodungen, den globalen Abfluss um 1,7 Prozent, während Wasserentnahmen zur Bewässerung einen global geringen, gebietsweise aber bedeutsamen Rückgang verursachten.

Die globale Erwärmung hat die Abflussmenge über das Jahrhundert dagegen um 0,9 Prozent verringert. Am deutlichsten ist dieser Trend, der zum größten Teil auf stärkerer Verdunstung im Sommerhalbjahr beruht, in hohen nördlichen Breiten und in Zentralasien. In den letzten Jahrzehnten habe der Einfluss der Temperatur zugenommen, berichten die Wissenschaftler. Berechnungen auf Grundlage dreier Szenarien des Weltklimarates zeigen, dass sich diese Entwicklung fortsetzen wird und allein die zu erwartende Erwärmung die globale Abflussmenge am Ende des 21. Jahrhunderts um etwa sechs Prozent vermindern könnte.

Theoretisch kann die Zunahme der CO2-Konzentration diese Entwicklung künftig verstärken. Das Treibhausgas könnte wie ein Düngemittel wirken und die Bodenbedeckung mit Pflanzen zunehmen. Mehr Pflanzen würden regional mehr Wasser aus dem Boden aufnehmen und an die Luft abgeben. Global wirkt sich der Düngeeffekt bislang jedoch kaum aus. Ein anderer direkter CO2-Effekt hat den Abfluss zwischen 1901 und 2002 dagegen um mehr als ein Prozent zunehmen lassen: Bei höherer CO2-Konzentration müssen Pflanzen die Spaltöffnungen ihrer Blätter weniger öffnen, um ausreichende Mengen CO2 für ihr Wachstum aufzunehmen. Sie geben daher weniger Wasser an die Atmosphäre ab und nehmen entsprechend weniger aus dem Boden auf.

"Der Netto-Effekt des steigenden CO2-Gehalts der Atmosphäre könnte die globale Abflussmenge bis zum Jahr 2100 um weitere fünf Prozent erhöhen", sagt Dieter Gerten. Der negative Temperatureinfluss würde damit in etwa ausgeglichen. Allerdings würden sich Temperatur- und CO2-Einflüsse nur bedingt in denselben Regionen bemerkbar machen. Die Forschergruppe stellt sich daher die Aufgabe, in weiteren Studien die mögliche zukünftige Entwicklung der weltweiten Wasserverfügbarkeit und -nachfrage genauer zu analysieren.

"Unser Modell ist derzeit das einzige, das die Einflüsse der verschiedenen Faktoren in dieser Form abbilden kann", sagt Wolfgang Lucht, der Leiter der Abteilung. Dazu sei es notwendig, Wissen über den Wasserhaushalt der Erde mit Wissen über die Vegetationsdynamik zu kombinieren. "Die Berechnungen deuten darauf hin, dass der vielfältige menschliche Einfluss auf den Wasserhaushalt der Erde zunimmt", sagt Lucht. Um mit größerer Sicherheit beziffern zu können, wie sich die Abflussmengen und damit die Wasserverfügbarkeit für Menschen entwickeln, brauche man jedoch mehr Messdaten und -methoden. Die Forschergruppe fordert daher, die Ausdünnung bestehender Messnetze zu stoppen.

Artikel:
Gerten, D., S. Rost, W. von Bloh, and W. Lucht (2008), Causes of change in 20th century global river discharge, Geophys. Res. Lett., 35, L20405, doi:10.1029/2008GL035258.
Für weitere Informationen wenden Sie sich bitte an die PIK-Pressestelle:
Tel.: 0331/288 2507
E-Mail: presse@pik-potsdam.de

Patrick Eickemeier | idw
Weitere Informationen:
http://www.agu.org/journals/gl/
http://www.pik-potsdam.de/aktuelles/pressemitteilungen/warum-wie-viel-wasser-die-fluesse-hinab-fliesst?set_language=de

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Stagnation im tiefen Südpazifik erklärt natürliche CO2-Schwankungen
23.02.2018 | Carl von Ossietzky-Universität Oldenburg

nachricht Birgt Mikroplastik zusätzliche Gefahren durch Besiedlung mit schädlichen Bakterien?
21.02.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics