Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Tübinger Geomikrobiologen entdecken, warum die Erde unter Strom steht

25.05.2010
Elektronenübertragung von Bakterien auf den Boden – Publikation in „Nature Geoscience“

Atmende Lebewesen, die Menschen eingeschlossen, aber auch viele Mikroorganismen in Böden und Sedimenten gewinnen Energie zum Leben durch Oxidation von organischem Material zu Kohlendioxid und benötigen hierzu Sauerstoff.

Das Verständnis solcher Atmungsprozesse in der Natur ist wichtig, um die Stoffkreisläufe und dadurch die Entwicklung unseres Klimas und das Umweltverhalten von Schadstoffen zu verstehen. Wie Atmungsprozesse in Böden und Sedimenten ablaufen, wo häufig kein Sauerstoff zur Verfügung steht, ist eine Frage, mit der sich Wissenschaftler intensiv beschäftigen. Geomikrobiologen vom Zentrum für Angewandte Geowissenschaften der Universität Tübingen unter der Leitung von Prof. Andreas Kappler konnten jetzt in Zusammenarbeit mit Forschern von der University of Wisconsin (USA), der Bundesanstalt für Materialforschung (BAM) und der Humboldt-Universität zu Berlin der Aufklärung dieser Mechanismen ein wichtiges Puzzleteil hinzufügen.

Sie haben erstmals gezeigt, dass Mikroorganismen in Abwesenheit von Sauerstoff feste organische Bodenteilchen, sogenannte Huminstoffe, als Ersatz für Sauerstoff zur Atmung verwenden können. Die Huminstoffe werden dabei mit Elektronen beladen, die sie weitergeben – im Boden fließt Strom. Die Forschungsergebnisse werden von der Fachzeitschrift Nature Geoscience am 23.5.2010, 19 Uhr, vorab online veröffentlicht

(http://dx.doi.org/10.1038/NGEO870).

Bei der sogenannten aeroben Atmung mit Sauerstoff werden beim Abbau organischer Verbindungen zur Energiegewinnung Elektronen frei. Diese werden auf Sauerstoff übertragen, der in die Zellen aufgenommen und dort zu Wasser umgewandelt wird. Diesen Prozess kann man leicht verfolgen, wenn man beim Ausatmen die ausströmende Luft gegen ein Brillenglas oder eine Fensterscheibe bläst, wo das neugebildete Wasser zu sehen ist. Manche Mikroorganismen sind in der Lage, eine solche Atmung unter sauerstofffreien Bedingungen durchzuführen, wobei die Elektronen dann nicht auf Sauerstoff, sondern zum Beispiel auf Nitrat oder Sulfat übertragen werden. Dann wird Stickstoff beziehungsweise unangenehm riechender Schwefelwasserstoff freigesetzt – diese Prozesse laufen zum Beispiel im hauseigenen Kompost ab.

Prof. Andreas Kappler und sein Team von der Universität Tübingen konnten nun in Zusammenarbeit mit Forschern von der University of Wisconsin (USA), der Bundesanstalt für Materialforschung (BAM) und der Humboldt-Universität zu Berlin zeigen, dass Bakterien in Böden und Sedimenten noch ein weiteres wichtiges Reservoir an Stoffen haben, an die sie die Elektronen abgeben können, und zwar an festes organisches Material, die Huminstoffe. Sie entstehen aus abgelagerten absterbenden Pflanzen und anderen Lebewesen und stellen den größten Vorrat an organischem Kohlenstoff in Böden und Sedimenten dar. Die Mikroorganismen sind in der Lage, solche Huminstoffe zu veratmen, sie bei der Übertragung von Elektronen sozusagen als Sauerstoffersatz zu verwenden. Was den beobachteten Prozess noch bedeutender macht, ist die Tatsache, dass die Huminstoffe die Elektronen nicht behalten, sondern an die in Böden und Sedimenten enthaltenen Eisenminerale weitergeben. Sie fungieren sozusagen als Elektronenbrücke oder Elektronenshuttle zwischen den Bakterien und den Eisenmineralen. Da die Weiterleitung von Elektronen nichts anderes ist als fließender Strom, leiten die Huminstoffe Strom von den Bakterien zu den Eisenmineralen. Solche Prozesse waren bisher nur bei gelösten organischen Verbindungen bekannt, nicht aber von festen organischen Bodenteilchen.

Diese Beobachtungen haben weitreichende Implikationen für das Funktionieren von Boden-Ökosystemen, erlauben sie doch einen Elektronentransfer und damit Stromfluss über große Strecken hinweg über ein Netzwerk von Huminstoffen. Hinweise auf ein solches leitendes Netzwerk in Böden und Sedimenten wurden kürzlich von einem dänischen Forscherteam ebenfalls in der Fachzeitschrift Nature veröffentlicht, die Wissenschaftler konnten ihre Beobachtung jedoch nicht erklären. In ihrer neuen Veröffentlichung liefern nun die Tübinger Wissenschaftler eine mögliche Erklärung.

Nähere Informationen:

Roden, E.; Kappler, A.; Bauer, I.; Jiang, J.; Paul, A; Stoesser, R.; Konishi, H.; Xu, H. (2010) Microbial reduction of solid-phase humics and electron shuttling to Fe(III) oxide. Nature Geoscience, in press.

DOI 10.1038/NGEO870

Prof. Dr. Andreas Kappler
Eberhard Karls Universität Tübingen
Arbeitsgruppe Geomikrobiologie
Zentrum für Angewandte Geowissenschaften
Sigwartstraße 10
72076 Tübingen
Tel. 0 70 71/2 97 49 92
Fax: 0 70 71/29 50 59
E-Mail: andreas.kappler [at] uni-tuebingen.de

Michael Seifert | idw
Weitere Informationen:
http://www.uni-tuebingen.de
http://www.ifg.uni-tuebingen.de/departments/zag/geomicrobiology/index.html

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Open Science auf offener See
19.01.2018 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

nachricht Bisher älteste bekannte Sauerstoffoase entdeckt
18.01.2018 | Eberhard Karls Universität Tübingen

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optisches Nanoskop ermöglicht Abbildung von Quantenpunkten

Physiker haben eine lichtmikroskopische Technik entwickelt, mit der sich Atome auf der Nanoskala abbilden lassen. Das neue Verfahren ermöglicht insbesondere, Quantenpunkte in einem Halbleiter-Chip bildlich darzustellen. Dies berichten die Wissenschaftler des Departements Physik und des Swiss Nanoscience Institute der Universität Basel zusammen mit Kollegen der Universität Bochum in «Nature Photonics».

Mikroskope machen Strukturen sichtbar, die dem menschlichen Auge sonst verborgen blieben. Einzelne Moleküle und Atome, die nur Bruchteile eines Nanometers...

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

Veranstaltungen

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

23.01.2018 | Veranstaltungen

Gemeinsam innovativ werden

23.01.2018 | Veranstaltungen

Leichtbau zu Ende gedacht – Herausforderung Recycling

23.01.2018 | Veranstaltungen

VideoLinks Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Lebensrettende Mikrobläschen

23.01.2018 | Biowissenschaften Chemie

3D-Druck von Metallen: Neue Legierung ermöglicht Druck von sicheren Stahl-Produkten

23.01.2018 | Maschinenbau

CHP1-Mutation verursacht zerebelläre Ataxie

23.01.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics