Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Tübinger Geomikrobiologen entdecken, warum die Erde unter Strom steht

25.05.2010
Elektronenübertragung von Bakterien auf den Boden – Publikation in „Nature Geoscience“

Atmende Lebewesen, die Menschen eingeschlossen, aber auch viele Mikroorganismen in Böden und Sedimenten gewinnen Energie zum Leben durch Oxidation von organischem Material zu Kohlendioxid und benötigen hierzu Sauerstoff.

Das Verständnis solcher Atmungsprozesse in der Natur ist wichtig, um die Stoffkreisläufe und dadurch die Entwicklung unseres Klimas und das Umweltverhalten von Schadstoffen zu verstehen. Wie Atmungsprozesse in Böden und Sedimenten ablaufen, wo häufig kein Sauerstoff zur Verfügung steht, ist eine Frage, mit der sich Wissenschaftler intensiv beschäftigen. Geomikrobiologen vom Zentrum für Angewandte Geowissenschaften der Universität Tübingen unter der Leitung von Prof. Andreas Kappler konnten jetzt in Zusammenarbeit mit Forschern von der University of Wisconsin (USA), der Bundesanstalt für Materialforschung (BAM) und der Humboldt-Universität zu Berlin der Aufklärung dieser Mechanismen ein wichtiges Puzzleteil hinzufügen.

Sie haben erstmals gezeigt, dass Mikroorganismen in Abwesenheit von Sauerstoff feste organische Bodenteilchen, sogenannte Huminstoffe, als Ersatz für Sauerstoff zur Atmung verwenden können. Die Huminstoffe werden dabei mit Elektronen beladen, die sie weitergeben – im Boden fließt Strom. Die Forschungsergebnisse werden von der Fachzeitschrift Nature Geoscience am 23.5.2010, 19 Uhr, vorab online veröffentlicht

(http://dx.doi.org/10.1038/NGEO870).

Bei der sogenannten aeroben Atmung mit Sauerstoff werden beim Abbau organischer Verbindungen zur Energiegewinnung Elektronen frei. Diese werden auf Sauerstoff übertragen, der in die Zellen aufgenommen und dort zu Wasser umgewandelt wird. Diesen Prozess kann man leicht verfolgen, wenn man beim Ausatmen die ausströmende Luft gegen ein Brillenglas oder eine Fensterscheibe bläst, wo das neugebildete Wasser zu sehen ist. Manche Mikroorganismen sind in der Lage, eine solche Atmung unter sauerstofffreien Bedingungen durchzuführen, wobei die Elektronen dann nicht auf Sauerstoff, sondern zum Beispiel auf Nitrat oder Sulfat übertragen werden. Dann wird Stickstoff beziehungsweise unangenehm riechender Schwefelwasserstoff freigesetzt – diese Prozesse laufen zum Beispiel im hauseigenen Kompost ab.

Prof. Andreas Kappler und sein Team von der Universität Tübingen konnten nun in Zusammenarbeit mit Forschern von der University of Wisconsin (USA), der Bundesanstalt für Materialforschung (BAM) und der Humboldt-Universität zu Berlin zeigen, dass Bakterien in Böden und Sedimenten noch ein weiteres wichtiges Reservoir an Stoffen haben, an die sie die Elektronen abgeben können, und zwar an festes organisches Material, die Huminstoffe. Sie entstehen aus abgelagerten absterbenden Pflanzen und anderen Lebewesen und stellen den größten Vorrat an organischem Kohlenstoff in Böden und Sedimenten dar. Die Mikroorganismen sind in der Lage, solche Huminstoffe zu veratmen, sie bei der Übertragung von Elektronen sozusagen als Sauerstoffersatz zu verwenden. Was den beobachteten Prozess noch bedeutender macht, ist die Tatsache, dass die Huminstoffe die Elektronen nicht behalten, sondern an die in Böden und Sedimenten enthaltenen Eisenminerale weitergeben. Sie fungieren sozusagen als Elektronenbrücke oder Elektronenshuttle zwischen den Bakterien und den Eisenmineralen. Da die Weiterleitung von Elektronen nichts anderes ist als fließender Strom, leiten die Huminstoffe Strom von den Bakterien zu den Eisenmineralen. Solche Prozesse waren bisher nur bei gelösten organischen Verbindungen bekannt, nicht aber von festen organischen Bodenteilchen.

Diese Beobachtungen haben weitreichende Implikationen für das Funktionieren von Boden-Ökosystemen, erlauben sie doch einen Elektronentransfer und damit Stromfluss über große Strecken hinweg über ein Netzwerk von Huminstoffen. Hinweise auf ein solches leitendes Netzwerk in Böden und Sedimenten wurden kürzlich von einem dänischen Forscherteam ebenfalls in der Fachzeitschrift Nature veröffentlicht, die Wissenschaftler konnten ihre Beobachtung jedoch nicht erklären. In ihrer neuen Veröffentlichung liefern nun die Tübinger Wissenschaftler eine mögliche Erklärung.

Nähere Informationen:

Roden, E.; Kappler, A.; Bauer, I.; Jiang, J.; Paul, A; Stoesser, R.; Konishi, H.; Xu, H. (2010) Microbial reduction of solid-phase humics and electron shuttling to Fe(III) oxide. Nature Geoscience, in press.

DOI 10.1038/NGEO870

Prof. Dr. Andreas Kappler
Eberhard Karls Universität Tübingen
Arbeitsgruppe Geomikrobiologie
Zentrum für Angewandte Geowissenschaften
Sigwartstraße 10
72076 Tübingen
Tel. 0 70 71/2 97 49 92
Fax: 0 70 71/29 50 59
E-Mail: andreas.kappler [at] uni-tuebingen.de

Michael Seifert | idw
Weitere Informationen:
http://www.uni-tuebingen.de
http://www.ifg.uni-tuebingen.de/departments/zag/geomicrobiology/index.html

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Der Satellitenblick auf die Dürre in Kenia
28.06.2017 | Technische Universität Wien

nachricht Bisher unbekanntes Aussterben grosser Meerestiere entdeckt
27.06.2017 | Universität Zürich

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schnelles und umweltschonendes Laserstrukturieren von Werkzeugen zur Folienherstellung

Kosteneffizienz und hohe Produktivität ohne dabei die Umwelt zu belasten: Im EU-Projekt »PoLaRoll« entwickelt das Fraunhofer-Institut für Produktionstechnologie IPT aus Aachen gemeinsam mit dem Oberhausener Fraunhofer-Institut für Umwelt-, Sicherheit- und Energietechnik UMSICHT und sechs Industriepartnern ein Modul zur direkten Laser-Mikrostrukturierung in einem Rolle-zu-Rolle-Verfahren. Ziel ist es, mit Hilfe dieses Systems eine siebartige Metallfolie als Demonstrator zu fertigen, die zum Sonnenschutz von Glasfassaden verwendet wird: Durch ihre besondere Geometrie wird die Sonneneinstrahlung reduziert, woraus sich ein verminderter Energieaufwand für Kühlung und Belüftung ergibt.

Das Fraunhofer IPT ist im Projekt »PoLaRoll« für die Prozessentwicklung der Laserstrukturierung sowie für die Mess- und Systemtechnik zuständig. Von den...

Im Focus: Das Auto lernt vorauszudenken

Ein neues Christian Doppler Labor an der TU Wien beschäftigt sich mit der Regelung und Überwachung von Antriebssystemen – mit Unterstützung des Wissenschaftsministeriums und von AVL List.

Wer ein Auto fährt, trifft ständig Entscheidungen: Man gibt Gas, bremst und dreht am Lenkrad. Doch zusätzlich muss auch das Fahrzeug selbst ununterbrochen...

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Marine Pilze – hervorragende Quellen für neue marine Wirkstoffe?

28.06.2017 | Veranstaltungen

Willkommen an Bord!

28.06.2017 | Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

EUROSTARS-Projekt gestartet - mHealth-Lösung: time4you Forschungs- und Entwicklungspartner bei IMPACHS

28.06.2017 | Unternehmensmeldung

Proteine entdecken, zählen, katalogisieren

28.06.2017 | Biowissenschaften Chemie

Neue Scheinwerfer-Dimension: Volladaptive Lichtverteilung in Echtzeit

28.06.2017 | Automotive