Tsunamigefahr durch Inselvulkane – Kieler Meeresforscher untersuchen Vulkankomplex im Westpazifik

Ritter Island vor und nach dem Kollaps im Jahre 1888: Die Pfeile auf dem Photo aus 2004 zeigen die Umrisse an, die der Zeichnung aus 1835 zugeordnet werden können. Jacobs, 1844

Flankenzusammenbrüche von Vulkaninseln generieren hochenergetische Erdrutsche, die große Tsunamis verursachen können. Computersimulationen zeigen, dass sehr große vulkanische Erdrutsche sogar zu ozeanweiten Flutwellen führen können.

Die Magnitude solcher Tsunamis ist jedoch umstritten, da sie von vielen Faktoren abhängt, insbesondere von den submarinen Transport- und Ablagerungsprozessen. Für eine vollständige Analyse des Gefahrenpotentials, das von Flankenkollapsen ausgeht, ist es daher wichtig, diese Faktoren im Detail zu untersuchen.

Wissenschaftlerinnen und Wissenschaftler unter Leitung von Prof. Dr. Christian Berndt vom GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel werden in den kommenden vier Wochen mit dem deutschen Forschungsschiff SONNE die Westflanke von Ritter Island in der Bismarcksee im Westpazifik genauer untersuchen. „1888 sind beim Kollaps der Westflanke der Insel etwa fünf Kubikkilometern Material bewegt worden“, erläutert der Geophysiker Christian Berndt. „Damit ist die Rutschung der größte historisch belegte Flankenkollaps eines Vulkans“, so Berndt weiter.

Nach Ansicht der Forscher bietet das Arbeitsgebiet aus mehreren Gründen ideale Bedingungen zur Rekonstruktion der submarinen Transport- und Ablagerungsprozesse. Zum einen hat der Zusammenbruch in jüngster geologischer Vergangenheit stattgefunden und somit sind die Ablagerungen im marinen Bereich sehr deutlich erkennbar.

Ferner sind historische Aufzeichnungen wie Augenzeugenberichte von dem Ereignis vorhanden. Diese enthalten unter anderem die Höhen und Ankunftszeiten des ausgelösten Tsunamis, wie sie von deutschen Siedlern auf mehreren Nachbarinseln gemessen und dokumentiert wurden.

„Wir werden eine ganze Reihe verschiedener geologischer, geophysikalischer und biologischer Untersuchungsverfahren anwenden, um mehr über das Ereignis zu erfahren“, erläutert Christian Berndt. Nach einer detaillierten Kartierung mit Fächerecholot und Parasound, kommen seismische Verfahren zum Einsatz. Mit dem P-Cable System des GEOMAR soll dann ein dreidimensionales Bild des Untergrundes erstellt werden, um die Dynamik des vulkanischen Erdrutsches zu analysieren.

Ferner werden auch Sedimentproben aus der Rutschungsablagerung genommen, um ihre Zusammensetzung und Herkunft sowie die zeitliche Entwicklung zu ermitteln. Der Tiefseeroboter HyBIS vom GEOMAR wird dann verwendet,, um Proben von großen Rutschungsblöcken zu nehmen und die Meeresbodenstrukturen durch Videoaufnahmen zu kartieren.

„Mit Hilfe der gewonnen Daten wird es im Nachgang möglich sein, den Tsunami und die Rutschung numerisch zu simulieren, um so die unbekannten Parameter wie Beschleunigung und Geschwindigkeit des abrutschenden Materials zu berechnen, die dann in Gefährdungsanalysen für andere Vulkane benutzt werden können“, so Christian Berndt.

Expedition auf einen Blick:
SONNE-Expedition SO252
Forschungsthema: Flankenzusammenbrüche an Vulkaninseln
Wissenschaftlicher Fahrtleiter: Prof. Dr. Christian Berndt (GEOMAR)
Start: 05. November 2016, Yokohama (Japan)
Ende: 18. Dezember 2016, Nouméa (Neukaledonien)

Media Contact

Dr. Andreas Villwock idw - Informationsdienst Wissenschaft

Weitere Informationen:

http://www.geomar.de/

Alle Nachrichten aus der Kategorie: Geowissenschaften

Die Geowissenschaften befassen sich grundlegend mit der Erde und spielen eine tragende Rolle für die Energieversorgung wie die allg. Rohstoffversorgung.

Zu den Geowissenschaften gesellen sich Fächer wie Geologie, Geographie, Geoinformatik, Paläontologie, Mineralogie, Petrographie, Kristallographie, Geophysik, Geodäsie, Glaziologie, Kartographie, Photogrammetrie, Meteorologie und Seismologie, Frühwarnsysteme, Erdbebenforschung und Polarforschung.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer