Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Treibhausgasen auf der Spur: Bayreuther Forscherteam untersucht Lachgas-Umsatz im Erdboden

22.12.2008
Das als "Lachgas" bekannte Distickstoffmonoxid (N2O) gehört zu den Treibhausgasen, deren steigende Konzentration in der Erdatmosphäre am globalen Klimawandel wesentlich beteiligt ist.

Ein Forschungsteam an der Universität Bayreuth hat unter experimentell simulierten Witterungsbedingungen sowohl die N2O-Flüsse zwischen Erdboden und Atmosphäre als auch die N2O-Konzentrationen entlang von Bodenprofilen untersucht. Die Messungen zeigen unter anderem, dass Waldböden in Trockenperioden mehr N2O aufnehmen, als sie in die Atmosphäre abgeben. Die Zeitschrift "Nature" berichtet in ihrer Dezember-Ausgabe 2008 über die Forschungsergebnisse.

Die steigende Konzentration von Treibhausgasen in der Erdatmosphäre zählt zu den wesentlichen Ursachen des globalen Klimawandels. Treibhausgase absorbieren einen Teil der Infrarotstrahlung, die vom Erdboden abgegeben wird; und einen Teil dieser Wärmeenergie strahlen sie auf die Erdoberfläche zurück, wo sie zusätzlich zur Sonneneinstrahlung einen Temperaturanstieg bewirken. Zu diesen Treibhausgasen gehört insbesondere auch das als "Lachgas" bekannte Distickstoffmonoxid (N2O). Insbesondere die Nutzung fossiler Brennstoffe und der vermehrte Einsatz von Kunstdünger in der Landwirtschaft haben dazu beigetragen, dass die Konzentration von Distickstoffmonoxid in der Atmosphäre in den letzten 200 Jahren um rund 18 Prozent gestiegen ist.

Mit der Frage, auf welchen Wegen und in welchen Mengen Distickstoffmonoxid vom Erdboden in die Atmosphäre und wieder zurück transportiert wird, befassen sich neue Forschungsarbeiten von Professor Dr. Gerhard Gebauer, Leiter des Labors für Isotopen-Biogeochemie an der Universität Bayreuth, und seiner Mitarbeiterin Stefanie Goldberg. Die renommierte Zeitschrift "Nature" berichtet in ihrer Dezember-Ausgabe 2008 über die Ergebnisse, die demnächst in der Zeitschrift "Global Change Biology" veröffentlicht werden.

Die beiden Biogeochemiker haben N2O-Flüsse in Fichtenwaldböden am Waldstein (Fichtelgebirge) im Rahmen der von der Deutschen Forschungsgemeinschaft geförderten Forschergruppe 562 "Dynamik von Bodenprozessen bei extremen meteorologischen Randbedingungen" untersucht. Dabei haben sie die Böden zunächst einer verlängerten Trockenperiode und anschließend heftigen Regenfällen ausgesetzt - einem Szenario also, das wissenschaftlichen Klimaprognosen zufolge in Mitteleuropa künftig immer häufiger auftreten wird. Unter diesen experimentell simulierten Witterungsbedingungen wurden sowohl die N2O-Flüsse zwischen Erdboden und Atmosphäre als auch die N2O-Konzentrationen entlang von Bodenprofilen gemessen. Dabei gelangten Gebauer und Goldberg zu dem Ergebnis, dass Trockenheit den mikrobiellen Nettoabbau des N2O im Boden fördert; und zwar entgegen bisherigen Annahmen insbesondere dann, wenn die Trockenperiode in die Vegetationszeit der Wälder fällt. Während die Konzentration von N2O tief im Erdboden wesentlich höher ist als in der Atmosphäre, erreicht das N2O im Boden nahe der Oberfläche niedrigere Konzentrationen als in der Atmosphäre.

Diese geringe Konzentration im Oberboden bewirkt, dass verstärkt N2O aus der Atmosphäre in den Erdboden eindringt: Der Boden nimmt mehr N2O auf, als er an die Atmosphäre abgibt - ein Zustand, den die Forschung als "Lachgassenke" bezeichnet. Diese Bilanz kehrt sich jedoch wieder um, wenn der Boden hinreichend durchfeuchtet ist. Dann fungiert der Boden wieder als Quelle des N2O. Sowohl die Nettoaufnahme von N2O während der Trockenperiode als auch die Nettoabgabe des N2O im Zustand der Durchfeuchtung sind gering und von der bisherigen Forschung daher vernachlässigt worden. Doch ist die Nettoaufnahme in der Trockenzeit immerhin so hoch, dass der Boden nach dem Einsetzen der Regenperiode nahezu vier Monate benötigt, um infolge der mikrobiellen Prozesse wieder zum Netto-N2O-Erzeuger zu werden.

Gebauer und Goldberg verwendeten für ihre Untersuchungen eine anspruchsvolle Analysetechnik: die Häufigkeitsbestimmung stabiler Stickstoff-Isotope. Ihre Messungen fanden im Labor für Isotopenbiogeochemie am Bayreuther Zentrum für Ökologie und Umweltwissenschaften (BayCEER) statt, einer zentralen wissenschaftlichen Einrichtung der Universität Bayreuth. Die beiden Biogeochemiker wollen hier ihre Forschungsarbeiten weiter fortsetzen, um den N2O-Austausch zwischen Erdboden und Atmosphäre noch präziser beschreiben und erklären zu können. Diese Arbeiten sollen dazu beitragen, in Zukunft die Konzentrationen dieses Treibgases in der Atmosphäre und die daraus resultierenden Klimaveränderungen mit umso größerer Zuverlässigkeit prognostizieren zu können.

Titelaufnahme:
Sharon A. Billings, Biogeochemistry: Nitrous oxide in flux, in: Nature 456, 888-889 (18 December 2008)
Kontaktadresse:
Prof. Dr. Gerhard Gebauer
Leiter des BayCEER-Labors für Isotopenbiogeochemie
Universität Bayreuth
Gebäude Geo I, Büro 125
Universitätsstr. 30
95447 Bayreuth
Telefon 0921 / 55-2060
E-Mail: gerhard.gebauer@uni-bayreuth.de

Christian Wißler | idw
Weitere Informationen:
http://www.bayceer.uni-bayreuth.de/fg_bp/
http://www.bayceer.uni-bayreuth.de
http://www.uni-bayreuth.de

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Die Ostsee als Zeitmaschine
14.05.2018 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

nachricht Erste Bohrung in einen aktiven Unterwasservulkan
09.05.2018 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

Passt eine ultrakalte Wolke aus zehntausenden Rubidium-Atomen in ein einzelnes Riesenatom? Forscherinnen und Forschern am 5. Physikalischen Institut der Universität Stuttgart ist dies erstmals gelungen. Sie zeigten einen ganz neuen Ansatz, die Wechselwirkung von geladenen Kernen mit neutralen Atomen bei weitaus niedrigeren Temperaturen zu untersuchen, als es bisher möglich war. Dies könnte einen wichtigen Schritt darstellen, um in Zukunft quantenmechanische Effekte in der Atom-Ion Wechselwirkung zu studieren. Das renommierte Fachjournal Physical Review Letters und das populärwissenschaftliche Begleitjournal Physics berichteten darüber.*)

In dem Experiment regten die Forscherinnen und Forscher ein Elektron eines einzelnen Atoms in einem Bose-Einstein-Kondensat mit Laserstrahlen in einen riesigen...

Im Focus: Algorithmen für die Leberchirurgie – weltweit sicherer operieren

Die Leber durchlaufen vier komplex verwobene Gefäßsysteme. Die chirurgische Entfernung von Tumoren ist daher oft eine schwierige Aufgabe. Das Fraunhofer-Institut für Bildgestützte Medizin MEVIS hat Algorithmen entwickelt, die die Bilddaten von Patienten analysieren und chirurgische Risiken berechnen. Leberkrebsoperationen werden damit besser planbar und sicherer.

Jährlich erkranken weltweit 750.000 Menschen neu an Leberkrebs, viele weitere entwickeln Lebermetastasen aufgrund anderer Krebserkrankungen. Ein chirurgischer...

Im Focus: Positronen leuchten besser

Leuchtstoffe werden schon lange benutzt, im Alltag zum Beispiel im Bildschirm von Fernsehgeräten oder in PC-Monitoren, in der Wissenschaft zum Untersuchen von Plasmen, Teilchen- oder Antiteilchenstrahlen. Gleich ob Teilchen oder Antiteilchen – treffen sie auf einen Leuchtstoff auf, regen sie ihn zum Lumineszieren an. Unbekannt war jedoch bisher, dass die Lichtausbeute mit Elektronen wesentlich niedriger ist als mit Positronen, ihren Antiteilchen. Dies hat Dr. Eve Stenson im Max-Planck-Institut für Plasmaphysik (IPP) in Garching und Greifswald jetzt beim Vorbereiten von Experimenten mit Materie-Antimaterie-Plasmen entdeckt.

„Wäre Antimaterie nicht so schwierig herzustellen, könnte man auf eine Ära hochleuchtender Niederspannungs-Displays hoffen, in der die Leuchtschirme nicht von...

Im Focus: Erklärung für rätselhafte Quantenoszillationen gefunden

Sogenannte Quanten-Vielteilchen-„Scars“ lassen Quantensysteme länger außerhalb des Gleichgewichtszustandes verweilen. Studie wurde in Nature Physics veröffentlicht

Forschern der Harvard Universität und des MIT war es vor kurzem gelungen, eine Rekordzahl von 53 Atomen einzufangen und ihren Quantenzustand einzeln zu...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

Visual-Computing an Bord der MS Wissenschaft

17.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

48V im Fokus!

21.05.2018 | Veranstaltungsnachrichten

Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

18.05.2018 | Physik Astronomie

Countdown für Kilogramm, Kelvin und Co.

18.05.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics