Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Treibhausgasen auf der Spur: Bayreuther Forscherteam untersucht Lachgas-Umsatz im Erdboden

22.12.2008
Das als "Lachgas" bekannte Distickstoffmonoxid (N2O) gehört zu den Treibhausgasen, deren steigende Konzentration in der Erdatmosphäre am globalen Klimawandel wesentlich beteiligt ist.

Ein Forschungsteam an der Universität Bayreuth hat unter experimentell simulierten Witterungsbedingungen sowohl die N2O-Flüsse zwischen Erdboden und Atmosphäre als auch die N2O-Konzentrationen entlang von Bodenprofilen untersucht. Die Messungen zeigen unter anderem, dass Waldböden in Trockenperioden mehr N2O aufnehmen, als sie in die Atmosphäre abgeben. Die Zeitschrift "Nature" berichtet in ihrer Dezember-Ausgabe 2008 über die Forschungsergebnisse.

Die steigende Konzentration von Treibhausgasen in der Erdatmosphäre zählt zu den wesentlichen Ursachen des globalen Klimawandels. Treibhausgase absorbieren einen Teil der Infrarotstrahlung, die vom Erdboden abgegeben wird; und einen Teil dieser Wärmeenergie strahlen sie auf die Erdoberfläche zurück, wo sie zusätzlich zur Sonneneinstrahlung einen Temperaturanstieg bewirken. Zu diesen Treibhausgasen gehört insbesondere auch das als "Lachgas" bekannte Distickstoffmonoxid (N2O). Insbesondere die Nutzung fossiler Brennstoffe und der vermehrte Einsatz von Kunstdünger in der Landwirtschaft haben dazu beigetragen, dass die Konzentration von Distickstoffmonoxid in der Atmosphäre in den letzten 200 Jahren um rund 18 Prozent gestiegen ist.

Mit der Frage, auf welchen Wegen und in welchen Mengen Distickstoffmonoxid vom Erdboden in die Atmosphäre und wieder zurück transportiert wird, befassen sich neue Forschungsarbeiten von Professor Dr. Gerhard Gebauer, Leiter des Labors für Isotopen-Biogeochemie an der Universität Bayreuth, und seiner Mitarbeiterin Stefanie Goldberg. Die renommierte Zeitschrift "Nature" berichtet in ihrer Dezember-Ausgabe 2008 über die Ergebnisse, die demnächst in der Zeitschrift "Global Change Biology" veröffentlicht werden.

Die beiden Biogeochemiker haben N2O-Flüsse in Fichtenwaldböden am Waldstein (Fichtelgebirge) im Rahmen der von der Deutschen Forschungsgemeinschaft geförderten Forschergruppe 562 "Dynamik von Bodenprozessen bei extremen meteorologischen Randbedingungen" untersucht. Dabei haben sie die Böden zunächst einer verlängerten Trockenperiode und anschließend heftigen Regenfällen ausgesetzt - einem Szenario also, das wissenschaftlichen Klimaprognosen zufolge in Mitteleuropa künftig immer häufiger auftreten wird. Unter diesen experimentell simulierten Witterungsbedingungen wurden sowohl die N2O-Flüsse zwischen Erdboden und Atmosphäre als auch die N2O-Konzentrationen entlang von Bodenprofilen gemessen. Dabei gelangten Gebauer und Goldberg zu dem Ergebnis, dass Trockenheit den mikrobiellen Nettoabbau des N2O im Boden fördert; und zwar entgegen bisherigen Annahmen insbesondere dann, wenn die Trockenperiode in die Vegetationszeit der Wälder fällt. Während die Konzentration von N2O tief im Erdboden wesentlich höher ist als in der Atmosphäre, erreicht das N2O im Boden nahe der Oberfläche niedrigere Konzentrationen als in der Atmosphäre.

Diese geringe Konzentration im Oberboden bewirkt, dass verstärkt N2O aus der Atmosphäre in den Erdboden eindringt: Der Boden nimmt mehr N2O auf, als er an die Atmosphäre abgibt - ein Zustand, den die Forschung als "Lachgassenke" bezeichnet. Diese Bilanz kehrt sich jedoch wieder um, wenn der Boden hinreichend durchfeuchtet ist. Dann fungiert der Boden wieder als Quelle des N2O. Sowohl die Nettoaufnahme von N2O während der Trockenperiode als auch die Nettoabgabe des N2O im Zustand der Durchfeuchtung sind gering und von der bisherigen Forschung daher vernachlässigt worden. Doch ist die Nettoaufnahme in der Trockenzeit immerhin so hoch, dass der Boden nach dem Einsetzen der Regenperiode nahezu vier Monate benötigt, um infolge der mikrobiellen Prozesse wieder zum Netto-N2O-Erzeuger zu werden.

Gebauer und Goldberg verwendeten für ihre Untersuchungen eine anspruchsvolle Analysetechnik: die Häufigkeitsbestimmung stabiler Stickstoff-Isotope. Ihre Messungen fanden im Labor für Isotopenbiogeochemie am Bayreuther Zentrum für Ökologie und Umweltwissenschaften (BayCEER) statt, einer zentralen wissenschaftlichen Einrichtung der Universität Bayreuth. Die beiden Biogeochemiker wollen hier ihre Forschungsarbeiten weiter fortsetzen, um den N2O-Austausch zwischen Erdboden und Atmosphäre noch präziser beschreiben und erklären zu können. Diese Arbeiten sollen dazu beitragen, in Zukunft die Konzentrationen dieses Treibgases in der Atmosphäre und die daraus resultierenden Klimaveränderungen mit umso größerer Zuverlässigkeit prognostizieren zu können.

Titelaufnahme:
Sharon A. Billings, Biogeochemistry: Nitrous oxide in flux, in: Nature 456, 888-889 (18 December 2008)
Kontaktadresse:
Prof. Dr. Gerhard Gebauer
Leiter des BayCEER-Labors für Isotopenbiogeochemie
Universität Bayreuth
Gebäude Geo I, Büro 125
Universitätsstr. 30
95447 Bayreuth
Telefon 0921 / 55-2060
E-Mail: gerhard.gebauer@uni-bayreuth.de

Christian Wißler | idw
Weitere Informationen:
http://www.bayceer.uni-bayreuth.de/fg_bp/
http://www.bayceer.uni-bayreuth.de
http://www.uni-bayreuth.de

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Expedition ans Ende der Welt
29.11.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lakkolithe können auch während eines Vulkanausbruchs entstehen
24.11.2016 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie