Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Topografie beeinflusst die Biodiversität im Gebirge

02.02.2016

Wird das Klima wärmer, verschiebt sich der Lebensraum von Tier- und Pflanzenarten im Gebirge voraussichtlich in höhere und damit kältere Lagen. Die Biodiversität wird aber nicht nur von der Temperatur entscheidend beeinflusst. Auch der topografiebedingte räumliche Zusammenhang von Lebensräumen wirkt sich auf den Artenreichtum aus, haben Forschende der ETH Lausanne und der Universität Zürich herausgefunden.

Gebirgsregionen sind Lebensraum für zahlreiche Tier- und Pflanzenarten. Den grössten Artenreichtum verzeichnen typischerweise mittlere Höhenlagen. Lange Zeit hatte die Wissenschaft keine schlüssige Erklärung dafür.


Voneinander isolierte Bergspitzen und Täler (grau/weiss) und viel stärker verbundene mittlere Höhenlagen (gelb-roter Gradient).

Bild: ETH Lausanne

Als mögliche Gründe wurden niedrige Temperaturen in hohen oder störende Einflüsse durch den Menschen in tiefen Lagen angeführt. Nun liefern neue, in der Fachzeitschrift Proceedings of the National Academy of Sciences veröffentlichte Forschungsresultate eine andere Begründung:

Die meisten Arten leben in mittleren Höhenlagen, weil dort ähnliche Lebensräume am grössten und am stärksten miteinander verbunden sind. Verschieben sich Arten in Folge der Anpassung an wärmere klimatische Bedingungen in höhere Lagen, treffen sie auf Lebensräume mit völlig anderen topografischen Gegebenheiten.

Grösster Artenreichtum in mittleren Höhenlagen

Wie viele Arten in einer bestimmten Region nebeneinander existieren können, ist von zahlreichen Faktoren abhängig. In grossen Gebieten mit ähnlichen Eigenschaften finden sich in der Regel mehr Arten als in kleinen Gebieten. Sind mehrere ähnliche Lebensräume miteinander verbunden, erhöht sich die Biodiversität zusätzlich.

In Gebirgsregionen spielen zudem Faktoren wie Temperatur, biologische Produktivität und Exposition eine grosse Rolle. Forschende der ETH Lausanne, der Universität Zürich und der Eidgenössischen Anstalt für Wasserversorgung, Abwasserreinigung und Gewässerschutz (Eawag) haben die im Flachland gewonnenen Erkenntnisse auf Gebirgsregionen übertragen und haben so eine neue Erklärung dafür gefunden, weshalb der Artenreichtum in mittleren Höhenlagen am grössten ist.

«In Gebirgsregionen bilden Gipfel und Täler isolierte Lebensräume – ähnlich wie Inseln im Meer. Die Gebiete in mittleren Höhenlagen sind dagegen stark miteinander verbunden», erklärt Enrico Bertuzzo, Forscher am Labor für Ökohydrologie der ETH Lausanne und Erstautor der Studie. «Je grösser und je vernetzter ein Lebensraum ist, desto höher ist die Biodiversität, während in isolierten Gebieten nur wenige Arten anzutreffen sind. Wir nahmen daher an, dass die Topografie selbst eine Schlüsselrolle in der Regulierung einnimmt, wie sich der Artenreichtum mit der Höhenlage verändert.»

Biodiversitätsmuster lassen sich durch Topografie erklären

Die Biodiversität wird häufig auf der Basis von idealisierten kegelförmigen Bergen untersucht, bei denen man davon ausgeht, dass in vergleichbaren Höhenlagen auch ähnliche Lebensräume zu finden sind. In diesen Modellen werden die Lebensräume mit zunehmender Höhe immer kleiner. Man geht davon aus, dass die Biodiversität am Fuss des Kegels am grössten ist und nach oben hin laufend abnimmt.

Das Forschungsteam hat einen aufwendigeren Forschungsansatz verfolgt. «Anstatt die Gebirgslandschaft auf eine perfekte Kegelform zu vereinfachten, wollten wir die Landschaft in ihrer vollen Komplexität berücksichtigen», betont Mitautor Florian Altermatt vom Institut für Evolutionsbiologie und Umweltwissenschaften der Universität Zürich.

Um ihre Annahme zu überprüfen, dass die Landschaftsstruktur selbst die Biodiversitätsmuster beeinflussen, haben die Wissenschaftler in einer Computersimulation zahlreiche virtuelle Arten in einer Gebirgslandschaft ausgesetzt. Jeder virtuellen Art wurde eine für ihre Verbreitung optimale Höhenlage zugewiesen und diese wurden einheitlich auf alle berücksichtigten Lagen verteilt.

Dann liessen die Forschenden die virtuellen Arten um Lebensräume in den Gebieten konkurrieren, die basierend auf realen Landschaften modelliert wurden. Die Simulationen haben die Annahme bestätigt: «Die in der Natur zu beobachtenden Biodiversitätsmuster lassen sich allein schon durch die jeweilige Topografie erklären. Andere Faktoren wie Temperatur, Produktivität etc. spielen ebenfalls eine wichtige Rolle, sie kommen einfach zusätzlich zum Effekt der Landschaftsstruktur zum Tragen», erläutert Altermatt.

Angesichts einer immer wärmer werdenden Welt sind diese Ergebnisse von spezieller Relevanz. Bertuzzo zieht folgenden Schluss: «Nur wenn wir den Zusammenhang zwischen Höhenlage und Biodiversität kennen, können wir die räumliche Neuverteilung der Arten infolge des Klimawandels vorhersagen. Steigen die Temperaturen, verschieben sich die Lebensräume von Tier- und Pflanzenarten in höhere Lagen. Eine bestimmte ökologische Gemeinschaft findet dort hinsichtlich Verfügbarkeit und Vernetzung ihres Lebensraums ganz andere topografische Gegebenheiten vor. Unsere Ergebnisse zeigen, wie wichtig es ist, diese Faktoren bei der Prognose künftiger Veränderungen zu berücksichtigen.»

Literatur:
Enrico Bertuzzo, Francesco Carrara, Lorenzo Maric, Florian Altermatt, Ignacio Rodriguez-Iturbe, and Andrea Rinaldoa. Geomorphic controls on elevational gradients of species richness. Proceedings of the National Academy of Sciences. February 1, 2016. doi: 10.1073/pnas.1518922113

Kontakte:
Prof. Florian Altermatt
Institut für Evolutionsbiologie und Umweltwissenschaften
Universität Zürich
Tel. +41 58 765 55 92
E-Mail: florian.altermatt@ieu.uzh.ch

Prof. Andrea Rinaldo
Labor für Ökohydrologie
ETH Lausanne
Tel. +41 21 693 80 34
Mobile +41 79 226 70 83
E-Mail: andrea.rinaldo@epfl.ch

Weitere Informationen:

http://www.mediadesk.uzh.ch/articles/2016/topografie-beeinflusst-biodiversitaet....

Kurt Bodenmüller | Universität Zürich

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas
20.04.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Von GeoFlow zu AtmoFlow
20.04.2018 | Brandenburgische Technische Universität Cottbus-Senftenberg

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Moleküle brillant beleuchtet

Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert. Die Wissenschaftler versprechen sich von dieser Technologie eine Vielzahl von Anwendungen, unter anderem im Bereich der Krebsfrüherkennung.

Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Metalle verbinden ohne Schweißen

Kieler Prototyp für neue Verbindungstechnik wird auf Hannover Messe präsentiert

Schweißen ist noch immer die Standardtechnik, um Metalle miteinander zu verbinden. Doch das aufwändige Verfahren unter hohen Temperaturen ist nicht überall...

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0

23.04.2018 | Veranstaltungen

Mars Sample Return – Wann kommen die ersten Gesteinsproben vom Roten Planeten?

23.04.2018 | Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Moleküle brillant beleuchtet

23.04.2018 | Physik Astronomie

Sauber und effizient - Fraunhofer ISE präsentiert Wasserstofftechnologien auf Hannover Messe

23.04.2018 | HANNOVER MESSE

Fraunhofer IMWS entwickelt biobasierte Faser-Kunststoff-Verbunde für Leichtbau-Anwendungen

23.04.2018 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics