Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Tief gebohrt: Fossilien erlauben Einblick in die Entstehung einzigartiger antarktischer Ökosysteme

19.04.2013
Der Südozean rund um die Antarktis ist ein „Global Player“: Sein eng an die Bildung von Meereis gekoppeltes Plankton-Ökosystem steht an der Basis der marinen Nahrungsnetze und beeinflusst den globalen Kohlenstoff-Kreislauf.

Seine Entstehung fällt mit der Vereisung der Antarktis vor 33,6 Millionen Jahren zusammen. Dies hat jetzt ein internationales Team mit Wissenschaftlern der Goethe-Universität Frankfurt und des Biodiversität und Klima Forschungszentrums (BiK-F) ermittelt.


Fossile Reste eines Dinoflagellaten – einer Alge, wie sie für die Sedimente aus dem frühen Oligozän vor 33 Millionen Jahren typisch ist. Der Durchmesser beträgt etwa 100 Mikrometer. © Alexander Houben

Eine heute in der Fachzeitschrift „Science“ veröffentlichte Studie zeigt, dass wohl erst die Entstehung dieses Meereis-Ökosystems die Evolution der heutigen Bartenwale und Pinguine ermöglichte.

Die Wissenschaftler analysierten Sedimentproben aus Bohrkernen vom Meeresgrund, die 2010 im Rahmen des Integrated Ocean Drilling Program (IODP) vor der Küste der Antarktis gewonnen wurden. Diese reichen bis zu einen Kilometer unter den Meeresboden und erlauben völlig neue Einblicke in längst vergangene Zeiten.

Eine im Sommer 2012 veröffentlichte, auf Ergebnissen dieser Bohrungen basierende Studie zeigte, dass vor 53 Millionen Jahren subtropische Verhältnisse in der Antarktis geherrscht haben, die das Wachstum von Palmen ermöglichten. In den folgenden 20 Millionen Jahren kühlte das Klima kontinuierlich ab. Die jetzt erschienene Studie fokussiert auf den Zeitpunkt vor ca. 33,6 Millionen Jahren, als sich infolge der globalen Abkühlung innerhalb kurzer Zeit ein gewaltiger Eisschild über die Antarktis ausbreitete. Durch ihn änderten sich die Lebensbedingungen und damit die Ökosysteme auf dem antarktischen Kontinent und im angrenzenden Südozean radikal.

Winzige Zeitzeugen: Dinoflagellaten

Während die meisten Algen, aus denen das Plankton der Ozeane hauptsächlich besteht, keinerlei Rückstände in den Sedimenten der Bohrkerne hinterlassen, überdauern die Überreste von Dinoflagellaten, einer Algengruppe aus fossil erhaltungsfähiger organischer Substanz, Jahrmillionen. Die Wissenschaftler konnten so anhand fossiler Spuren dieser einzelligen Organismen in den antarktischen Sedimentkernen die Umwälzung der Plankton-Ökosysteme vor ca. 33,6 Millionen Jahren eindeutig rekonstruieren. Für die Zeit, als die Antarktis komplett eisfrei war, fanden die Forscher eine Vielzahl von Dinoflagellatenarten, die für warme Klimate typisch sind. Zeitgleich mit dem Entstehen des antarktischen Eisschilds brach diese Vielfalt plötzlich zusammen; von nun an kamen nur noch Arten vor, die an die zeitweilige Eisbedeckung des Ozeans angepasst und auch heute für antarktische Gewässer typisch sind. Sie stehen nur saisonal, nämlich kurz nach der Eisschmelze im Frühjahr und Sommer, als Nahrungsquelle für die Lebewesen zur Verfügung, die weiter oben in der Nahrungskette stehen.

Neue Arten dank Nahrungsknappheit

Die Gewässer rund um die Antarktis spielen eine Schlüsselrolle im globalen Nahrungsnetz der Ozeane. Wenn im antarktischen Sommer das Meereis schmilzt, treten starke Algenblüten auf. Diese sind die Nahrungsgrundlage für kleine Einzeller, aber auch für größere Organismen. „Der plötzliche, klimabedingte Umbruch der Dinoflagellaten-Vergesellschaftungen steht eindeutig für eine Umbildung des gesamten Plankton-Ökosystems rund um die Antarktis“, so Prof. Jörg Pross, Paläoklimatologe an der Goethe-Universität Frankfurt und Mitglied des Biodiversität und Klima-Forschungszentrums (BiK-F).

Er erläutert weiter: „Die Häufigkeits-Explosion derjenigen Dinoflagellaten, die an eine zumindest zeitweise Eisbedeckung adaptiert sind, hatte zur Folge, dass sich das gesamte Nahrungsnetz im Südozean neu organisieren musste.“ Organismen, die in der Nahrungspyramide des Ozeans weiter oben angesiedelt sind, mussten sich dahingehend umstellen, dass sie nur noch für wenige Monate im Jahr ein üppiges Nahrungsangebot vorfanden. Jörg Pross resümiert: „Unsere Daten deuten darauf hin, dass diese Umstellung einen Entwicklungsschub für die Bartenwale und Pinguine bewirkte, wie wir sie heute kennen“. Damit unterstreichen die Ergebnisse der neuen Studie, dass Zeiten starken Klimawandels oft mit besonders rascher biologischer Evolution einhergehen.

Für weitere Informationen kontaktieren Sie bitte:
Prof. Dr. Jörg Pross
Paleoenvironmental Dynamics Group
Facheinheit Paläontologie
Institut für Geowissenschaften der Goethe-Universität
und
LOEWE Biodiversität und Klima Forschungszentrum Frankfurt
Tel. 069 798-40181
joerg.pross@em.uni-frankfurt.de

oder

Dr. Julia Krohmer
LOEWE Biodiversität und Klima Forschungszentrum (BiK-F),
Transferstelle
Tel. 069 7542 1837
julia.krohmer@senckenberg.de

Studie:
A.J.P. Houben, P.K. Bijl, J. Pross et al: Reorganization of Southern Ocean Plankton Ecosystem at the Onset of Antarctic Glaciation, Science, DOI 10.1126/science.1223646

LOEWE Biodiversität und Klima Forschungszentrum, Frankfurt am Main
Mit dem Ziel, anhand eines breit angelegten Methodenspektrums die komplexen Wechselwirkungen von Biodiversität und Klima zu entschlüsseln, wird das Biodiversität und Klima Forschungszentrum (BiK‐F) seit 2008 im Rahmen der hessischen Landes‐ Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz (LOEWE) gefördert. Die Senckenberg Gesellschaft für Naturforschung und die Goethe Universität Frankfurt sowie weitere direkt eingebundene Partner kooperieren hier eng mit regionalen, nationalen und internationalen Akteuren aus Wissenschaft, Ressourcen‐ und Umweltmanagement, um Projektionen für die Zukunft zu entwickeln und wissenschaftlich gesicherte Empfehlungen für ein nachhaltiges Handeln zu geben.

Sabine Wendler | Senckenberg
Weitere Informationen:
http://www.bik‐f.de
http://www.senckenberg.de

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Rest-Spannung trotz Megabeben
13.12.2017 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

nachricht Winzige Weltenbummler: In Arktis und Antarktis leben die gleichen Bakterien
13.12.2017 | Eberhard Karls Universität Tübingen

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Materialinnovationen 2018 – Werkstoff- und Materialforschungskonferenz des BMBF

13.12.2017 | Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rest-Spannung trotz Megabeben

13.12.2017 | Geowissenschaften

Computermodell weist den Weg zu effektiven Kombinationstherapien bei Darmkrebs

13.12.2017 | Medizin Gesundheit

Winzige Weltenbummler: In Arktis und Antarktis leben die gleichen Bakterien

13.12.2017 | Geowissenschaften