Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Temperatur im Altai folgt Sonne mit Verzögerung

22.12.2008
Neue Ergebnisse der Klimaforschung mit Eisbohrkernen aus dem sibirischen Altai

Ein Eiskern, der 2001 von einem schweizerisch-russischen Forschungsteam unter Leitung des Paul Scherrer Instituts (PSI) auf dem Belukha-Gletscher im sibirischen Altai gebohrt wurde, liefert neue Erkenntnisse zur Klimaforschung.

Anhand von Sauerstoffisotopen im Eis wurden die Temperaturen der letzten 750 Jahre im Altai rekonstruiert. Die Forschenden fanden einen starken Zusammenhang zwischen den regionalen Temperaturen und der Sonnenaktivität in der Zeitperiode 1250-1850 und schliessen daraus, dass die Sonne eine wichtige Triebkraft für Temperaturschwankungen im Altai war.

Neue Ergebnisse der Klimaforschung mit Eisbohrkernen aus dem sibirischen Altai

Ein Eiskern, der 2001 von einem schweizerisch-russischen Forschungsteam unter Leitung des Paul Scherrer Instituts (PSI) auf dem Belukha-Gletscher im sibirischen Altai gebohrt wurde, liefert neue Erkenntnisse zur Klimaforschung. Anhand von Sauerstoffisotopen im Eis wurden die Temperaturen der letzten 750 Jahre im Altai rekonstruiert. Die Forschenden fanden einen starken Zusammenhang zwischen den regionalen Temperaturen und der Sonnenaktivität in der Zeitperiode 1250-1850 und schliessen daraus, dass die Sonne eine wichtige Triebkraft für Temperaturschwankungen im Altai war. Besonders bemerkenswert ist die Feststellung, dass die rekonstruierten Temperaturen dem Strahlungsantrieb der Sonne mit einer Verzögerung von 10 bis 30 Jahren folgen. Der starke Temperaturanstieg im Altai zwischen 1850 und 2000 kann jedoch nicht mit der Sonnenaktivität erklärt werden, sondern mit der wachsenden Konzentration der Treibhausgase in der Atmosphäre. Darüber berichten die Forschenden in der Online-Ausgabe der Fachzeitschrift Geophysical Research Letters.

Das Altai-Gebirge liegt an der Grenze zwischen Russland, Kasachstan, der Mongolei und China und gehört zu den Regionen der Erde mit einem besonders ausgeprägt kontinentalen Klima. Ein internationales Forschungsteam unter Leitung von Margit Schwikowski (Paul Scherrer Institut) hat 2001 auf dem Belukha-Gletscher nahe des höchsten Gipfels des Altai einen 139 m langen Eiskern gebohrt. Dieser Bohrkern hat nun nach umfangreichen Laborarbeiten seine Geheimnisse preisgegeben.

Eiskern als Thermometer

Der Eiskern wurde im Kühlraum des PSI bei -20°C in 3600 Proben zersägt und mit einem Isotopenmassenspektrometer auf den Gehalt an Sauerstoffisotopen 16O und 18O untersucht. Es konnte gezeigt werden, dass das Verhältnis dieser stabilen Sauerstoffisotope über die letzten 130 Jahre gut dem in einer nahe gelegenen Messstation gemessenen Temperaturverlauf folgt. Daher kann dieser Parameter als ein Mass für die Temperatur in der Vergangenheit verwendet werden. Die tiefste Probe wurde auf das Jahr 1250 datiert, womit der Eiskern Klimainformationen über die letzten 750 Jahre enthält.

Sonnenaktivität beeinflusst Temperaturverlauf

Die Intensität der Sonnenstrahlung ist keine Konstante. Sie schwankt in Zyklen um einen Wert von 1365 Watt pro Quadratmeter. Der bekannteste Zyklus hat eine mittlere Dauer von 11 Jahren. Direkte Messungen der Sonnenaktivität sind erst seit 1978 möglich, aber bereits seit dem Jahr 1610 wird die Anzahl der Sonnenflecken - ein Mass für die Sonnenaktivität - mittels Teleskopen beobachtet. Für den Zeitraum davor liefern andere indirekte Methoden Hinweise auf die Sonnenaktivität: die Analyse der kosmogenen Radionuklide 10Be aus polaren Eiskernen und 14C aus Baumringen, deren Gehalt auch von der Sonnenaktivität abhängt.

Die regionalen Temperaturen im Altai zeigen in der Zeitperiode 1250-1850 eine hohe Korrelation mit der rekonstruierten Sonnenaktivität. Das bedeutet, dass die Änderungen in der Sonnenaktivität in dieser Zeit eine Haupttriebkraft für die Temperaturschwankungen waren.

Temperatur folgt der Sonne

Interessanterweise folgen die regionalen Temperaturen dem Strahlungsantrieb mit einer Verzögerung von 10 bis 30 Jahren. Die Studie der PSI-Forschenden ist die erste, in der eine solche Verzögerung über einen Zeitbereich von mehr als 500 Jahren beobachtet wurde. Da der Einfluss der Sonnenaktivität auf das Klima noch nicht endgültig geklärt ist, sind solche Beobachtungen ein wichtiger Beitrag zu deren Verständnis. Ein möglicher Mechanismus, der von verschiedenen Autoren diskutiert wurde und der diese Verzögerung von im Mittel 20 Jahren erklären könnte, ist der indirekte Einfluss der Sonne auf Temperaturänderungen über das System Ozean - Atmosphäre. Das Meerwasser erwärmt sich an Orten hoher Sonneneinstrahlung, d.h. in den Subtropen und Tropen, am stärksten. Die Wärmeenergie wird im Ozean von niederen zu höheren Breiten transportiert und dort wieder an die Atmosphäre abgegeben. Aufgrund der hohen Wärmekapazität der Ozeane und variabler Strömungsgeschwindigkeiten sind dies sehr verzögerte Prozesse. Änderungen der atmosphärischen Zirkulation im Nordatlantik, die für Temperaturschwankungen im Altai verantwortlich sind, könnten im Mittel schon 20 Jahre früher durch Einstrahlungsänderungen im tropischen Ozean initiiert worden sein.

Starker Temperaturanstieg im 20. Jahrhundert kann nicht mit der Sonne erklärt werden

"Unsere Studie unterscheidet zwischen vorindustrieller Zeit (1250-1850) und der Periode der letzten 150 Jahre", betont Anja Eichler, Wissenschaftlerin am Paul Scherrer Institut, "Während Änderungen in der Sonnenaktivität ein Hauptgrund für Temperaturschwankungen in der vorindustriellen Zeit waren, zeigen die Temperaturen im Altai in den letzten 150 Jahren einen viel stärkeren Anstieg als die Sonnenaktivität. Dieser starke Anstieg korreliert mit der Zunahme des Treibhausgases CO2 in dieser Zeit. Die Ergebnisse unserer regionalen Studie deuten darauf hin, dass Änderungen der Sonnenaktivität weniger als die Hälfte des Temperaturanstieges seit 1850 im Altai erklären. Dies ist in Übereinstimmung mit globaleren Studien, basierend auf rekonstruierten Temperaturen der nördlichen Hemisphäre.", meint die Forscherin.

Die Arbeit ist in einer Kooperation des Paul Scherrer Instituts mit der Eawag - dem Wasserforschungs-Institut des ETH-Bereichs, dem Oeschger Centre for Climate Change Research und dem Departement für Chemie und Biochemie der Universität Bern sowie dem Institut für Wasser- und Umweltprobleme Barnaul (Russland) entstanden.

Das Paul Scherrer Institut entwickelt, baut und betreibt grosse und komplexe Forschungsanlagen und stellt sie der nationalen und internationalen Forschungsgemeinde zur Verfügung. Eigene Forschungsschwerpunkte sind Festkörperforschung und Materialwissenschaften, Elementarteilchenphysik, Biologie und Medizin, Energie- und Umweltforschung. Mit 1300 Mitarbeitenden und einem Jahresbudget von rund 260 Mio. CHF ist es das grösste Forschungsinstitut der Schweiz.

Kontakt:
PD Dr. Margit Schwikowski, Labor für Radio- und Umweltchemie des PSI, CH-5232 Villigen PSI; margit.schwikowski@psi.ch; Tel. 056 310 41 10

Dr. Anja Eichler, Labor für Radio- und Umweltchemie des PSI, CH-5232 Villigen PSI; anja.eichler@psi.ch; Tel. 056 310 2077

Originalveröffentlichung: A. Eichler, S. Olivier, K. Henderson, A. Laube, J. Beer, T. Papina, H.W. Gäggeler, and M. Schwikowski, Temperature response in the Altai region lags solar forcing, Geophysical Research Letters, doi:10.1029/2008GL035930, Im Druck (2008).

Dagmar Baroke | idw
Weitere Informationen:
http://www.psi.ch

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Was ist krebserregend am Erionit?
13.01.2017 | Friedrich-Schiller-Universität Jena

nachricht Drohnen im Einsatz für die Korallenriffforschung
10.01.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: Mit Bindfaden und Schere - die Chromosomenverteilung in der Meiose

Was einmal fest verbunden war sollte nicht getrennt werden? Nicht so in der Meiose, der Zellteilung in der Gameten, Spermien und Eizellen entstehen. Am Anfang der Meiose hält der ringförmige Proteinkomplex Kohäsin die Chromosomenstränge, auf denen die Bauanleitung des Körpers gespeichert ist, zusammen wie ein Bindfaden. Damit am Ende jede Eizelle und jedes Spermium nur einen Chromosomensatz erhält, müssen die Bindfäden aufgeschnitten werden. Forscher vom Max-Planck-Institut für Biochemie zeigen in der Bäckerhefe wie ein auch im Menschen vorkommendes Kinase-Enzym das Aufschneiden der Kohäsinringe kontrolliert und mit dem Austritt aus der Meiose und der Gametenbildung koordiniert.

Warum sehen Kinder eigentlich ihren Eltern ähnlich? Die meisten Zellen unseres Körpers sind diploid, d.h. sie besitzen zwei Kopien von jedem Chromosom – eine...

Im Focus: Der Klang des Ozeans

Umfassende Langzeitstudie zur Geräuschkulisse im Südpolarmeer veröffentlicht

Fast drei Jahre lang haben AWI-Wissenschaftler mit Unterwasser-Mikrofonen in das Südpolarmeer hineingehorcht und einen „Chor“ aus Walen und Robben vernommen....

Im Focus: Wie man eine 80t schwere Betonschale aufbläst

An der TU Wien wurde eine Alternative zu teuren und aufwendigen Schalungen für Kuppelbauten entwickelt, die nun in einem Testbauwerk für die ÖBB-Infrastruktur umgesetzt wird.

Die Schalung für Kuppelbauten aus Beton ist normalerweise aufwändig und teuer. Eine mögliche kostengünstige und ressourcenschonende Alternative bietet die an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

14. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

12.01.2017 | Veranstaltungen

Leipziger Biogas-Fachgespräch lädt zum "Branchengespräch Biogas2020+" nach Nossen

11.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weltweit erste Solarstraße in Frankreich eingeweiht

16.01.2017 | Energie und Elektrotechnik

Proteinforschung: Der Computer als Mikroskop

16.01.2017 | Biowissenschaften Chemie

Vermeintlich junger Stern entpuppt sich als galaktischer Greis

16.01.2017 | Physik Astronomie