Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Supereruptionen werden durch Auftriebskraft ausgelöst

06.01.2014
Wie Supervulkane aktiv werden, war bis anhin nicht geklärt.

ETH-Geologen haben nun gezeigt, dass alleine der durch Dichteunterschiede zwischen Magma und dem umgebenden Gestein erzeugte Druck ausreichen kann, um derartige Giganten zum Ausbruch zu bringen.



Dichteunterschiede zwischen Magma und dem umgebenden Gestein können einen Überdruck erzeugen, sodass in der Erdkruste Risse entstehen und sich das Magma seinen Weg an die Oberfläche bahnt.

Nigel Hawtin / ESRF


Supervulkane sind keine Vulkane wie man sie kennt. Indem sie nicht «ausbrechen», sondern richtiggehend explodieren, hinterlassen sie anstatt eines Vulkankegels ein riesiges Loch in der Erdkruste, eine Caldera, deren Durchmesser bis zu hundert Kilometer betragen kann. Im Schnitt sind Supervulkane seltener als alle 100'000 Jahre aktiv; in historischer Zeit war keiner aktiv. Daher können sich Forscher nur anhand der überlieferten Asche- und Gesteinsschichten ein vages Bild von diesen Ereignissen machen.

Ein Forscherteam unter Leitung der ETH-Professorin Carmen Sanchez-Valle hat nun einen Auslöser für Supereruptionen identifiziert. Es bestimmte experimentell die Dichte des Magmas von Supervulkanen. So konnte es nachweisen, dass der durch Dichteunterschiede in der Magmakammer verursachte Überdruck eine Supereruption auslösen kann. Die Magmakammer ist die mit Magma gefüllte Kammer in der Erdkruste unterhalb des Vulkans. Die neuen Erkenntnisse könnten helfen, «schlafende» Supervulkane besser einzuschätzen, etwa wie schnell ihr Magma die Erdkruste durchdringen und an die Oberfläche gelangen kann.

Zu grosse Magmakammer

Bekannte Supervulkane sind die Yellowstone-Caldera in den USA, der Toba-See in Indonesien und der Taupo-See in Neuseeland. Aber auch die im Vergleich eher kleinen Phlegräischen Felder bei Neapel zählen zu den rund 20 bisher bekannten Supervulkanen der Erde.

Dass der Ausbruch von Supervulkanen – wie es auch bei konventionellen Vulkanen der Fall ist – nicht alleine durch Überdruck aufgrund nachfliessenden Magmas in die Magmakammer ausgelöst wird, war schon seit Langem klar. Die Magmakammer eines Supervulkans kann mehrere Kilometer dick und bis zu hundert Kilometer breit sein. Sie ist deshalb viel zu gross, um durch Magma-Nachschub ausreichend Überdruck zu erhalten.

«Vergleichbar mit einem Fussball unter Wasser»

Über den Trigger einer Supereruption konnte bis anhin nur spekuliert werden. Einen möglichen Mechanismus sah man darin, dass der Überdruck in der Magmakammer durch Dichteunterschiede zwischen dem weniger dichten geschmolzenen Magma und dem vergleichsweise dichteren festen Gestein in der Umgebung erzeugt wird. «Der Effekt ist vergleichbar mit dem Auftrieb eines mit Luft gefüllten Fussball unter Wasser, der durch das schwerere umgebende Wasser nach oben gedrückt wird», sagt Wim Malfait, Erstautor der Studie, bis vor kurzem noch an der ETH Zürich und nun Forscher an der Empa.

Damit das Magma das Krustengestein über der Magmakammer durchschlagen und sich einen Weg an die Oberfläche bahnen kann, braucht es einen Druck, der 100 bis 400 Mal höher ist als der Luftdruck (10 bis 40 Megapascal). Um zu ermitteln, ob die Dichteunterschiede einen derart hohen Druck erzeugen können, müssen die Dichte der Magmaschmelze und des umgebenden Gesteins bekannt sein. Die der Magmaschmelze konnte bis anhin jedoch nicht direkt gemessen werden.

Erstmals Dichte des Magmas bestimmt

Den Forschern um Malfait gelang nun erstmals die Dichtebestimmung des Magmas von Supervulkanen mit Hilfe von Röntgenstrahlen der European Synchrotron Radiation Facility in Grenoble. Mit ihnen untersuchten sie künstlich hergestellte Magmaschmelzen bei unterschiedlichen Druck- und Temperaturbedingungen. Sowohl Schmelze als auch Druck und Temperatur entsprachen laut den Wissenschaftlern den natürlichen Gegebenheiten eines Supervulkans. Zudem variierten die Forscher den Wassergehalt der Schmelze. Über die verschiedenen Parameter formulierten sie mathematische Gleichungen, mit denen es ihnen gelang, die Gegebenheiten in einem Supervulkan zu modellieren.

«Die Ergebnisse zeigen, dass bei einer ausreichenden Grösse der Magmakammer alleine der durch Dichteunterschiede verursachte Überdruck genügt, um die darüber liegende Kruste zu durchbrechen und eine Eruption in Gang zu setzen», sagt Sanchez-Valle. Mechanismen, die herkömmliche Vulkanausbrüche begünstigten, wie etwa Sättigung des Magmas mit Wasserdampf oder tektonische Spannungen, könnten zwar auch ihren Beitrag leisten, seien aber nicht erforderlich, um eine Supereruption in Gang zu setzen, betonen die Forscher in der Studie, die in «Nature Geoscience» publiziert wurde.

Supervulkane gelten als eine ernsthafte wenn auch seltene Bedrohung. Da sie durch ihr untypisches Aussehen nicht leicht zu erkennen sind, werden auch heute noch neue entdeckt. Supervulkan-Eruptionen fördern in der Regel mindestens 450, nicht selten sogar mehrere 1000 Kubikkilometer Gesteinsmaterial und Asche an die Oberfläche und in die Atmosphäre. Asche und Gesteinsfragmente mit ihren umweltschädigenden chemischen Bestandteilen können bei den explosionsartigen Ausbrüchen bis über 30 Kilometer hoch in die Atmosphäre steigen und verheerende Auswirkungen für Klima und Leben auf der Erde haben. Die spektakulären und folgenschweren Ausbrüche des Krakatau (1883) und Tambora (1815), beides konventionelle Vulkane im heutigen Indonesien, sind vergleichsweise «harmlos» und ihre Auswurfsmassen betragen nur wenige Prozent einer Supereruption.

Literaturhinweis

Malfait WJ, Seifert R, Petitgirard S, Perrillat JP, Mezouar M, Ota T, Nakamura E, Lerch P, Sanchez-Valle C: Supervolcano eruptions driven by melt buoyancy in large silicic magma chambers. Nature Geoscience, Onlinepublikation 5. Januar 2014

News & Medienstelle | ETH Zürich
Weitere Informationen:
http://www.ethz.ch

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Der Salzwasser-Wächter auf der Darßer Schwelle
19.09.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Legionellen? Nein danke!

25.09.2017 | Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Legionellen? Nein danke!

25.09.2017 | Veranstaltungsnachrichten

Hochvolt-Lösungen für die nächste Fahrzeuggeneration!

25.09.2017 | Seminare Workshops

Seminar zum 3D-Drucken am Direct Manufacturing Center am

25.09.2017 | Seminare Workshops