Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Südpolarmeer: Durch Eisendüngung könnte weniger Kohlendioxid in der Tiefsee gespeichert werden

11.11.2014

Eine neue Studie zur natürlichen Eisendüngung im Südpolarmeer zeigt, dass zusätzliches Eisen die Wirksamkeit der sogenannten biologischen Pumpe, die Kohlendioxid aus den oberen Wasserschichten in die Tiefsee transportiert, reduziert.

Wie ein internationales Forscherteam um Dr. Ian Salter vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) herausfand, bedingt die Eisendüngung, dass sich neben Phytoplankton auch Kalkschalen bildende Meeresbewohner vermehren, welche sich von den Algen ernähren. Diese Tiere setzen Kohlendioxid frei, wenn sie ihre Kalkschalen bauen.


Zwischen dem Ozean und der Atmosphäre herrscht ein reger Austausch des Treibhausgases Kohlendioxid. Das Südpolarmeer spielt hierbei eine wichtige Rolle.

Foto: Frank Rödel, Alfred-Wegener-Institut

Wachsen und sterben diese Lebewesen in einem Meeresgebiet mit einem hohen natürlichen Eiseneintrag, werden dort bis zu 30 Prozent weniger Kohlendioxid in die Tiefsee verfrachtet als bisher angenommen. Ein wichtiger Effekt: Wird er ignoriert, hieße das, man überschätzt, wie viel Kohlendioxid der Ozean bei Eisendüngung speichern kann. Die Studie erscheint heute im Fachmagazin nature geoscience.

Zwischen dem Ozean und der Atmosphäre herrscht ein reger Austausch des Treibhausgases Kohlendioxid. Eine wichtige Rolle spielt hierbei das Phytoplankton, denn die Algen entziehen den oberen Wasserschichten Kohlendioxid. Stirbt das Phytoplankton, kann es bis auf den Meeresgrund sinken und dort einen Teil des Treibhausgases ablagern, den es zuvor durch Photosynthese gebunden hatte. Diesen Prozess nennen Wissenschaftler die biologische Kohlenstoffpumpe.

Obwohl die Wassermassen des Südpolarmeeres gemeinhin als nährstoffreich gelten, gedeiht das Phytoplankton in großen Bereichen des Südlichen Ozeans nur spärlich. Der Grund: Das Wasser enthält zu wenig Eisen, als dass Algen großflächig wachsen könnten.

Im Zuge des Klimawandels wird deshalb häufig die Idee diskutiert, das Südpolarmeer mit Eisen zu düngen. Mit diesem Vorschlag verbindet sich zum einen die Hoffnung, dass dadurch mehr Phytoplankton wächst und somit die biologische Kohlenstoffpumpe angeregt wird. Zum anderen glauben einige Wissenschaftler, damit erklären zu können, wie sich der Kohlendioxidgehalt der Atmosphäre in der Vergangenheit verändert hat.

Zwei Studien aus den zurückliegenden fünf Jahren haben diese Annahme untermauert. Forscher konnten darin nachweisen, dass infolge einer Düngung des Südpolarmeeres mit Eisen mehr Kohlendioxid zum Meeresgrund gesunken ist.

Aber: „Die bisher gemachten Untersuchungen reichen nicht aus, um zu verstehen, welche Mengen Kohlenstoff unter dem Strich wirklich gebunden werden. Der vom Phytoplankton verfrachtete organische Kohlenstoff stellt nämlich nur ein Kapitel einer ausgesprochen komplexen Geschichte dar“, sagt der AWI-Forscher Dr. Ian Salter.

„Das Phytoplankton dient auch als Nahrungsquelle für bestimmte Zooplanktonarten wie Foraminiferen und Flügelschnecken, die Kalkschalen bauen – ein Prozess, bei dem die Tiere Kohlendioxid freisetzen.“

Der AWI-Wissenschaftler und seine Kollegen waren die ersten Wissenschaftler, die den Tiefsee-Export der Kalkschalen in einem natürlich gedüngten Gebiet erforscht haben. Dazu führten sie Untersuchungen im Meer vor der Küste der Crozetinseln durch. An dieser südöstlich von Afrika gelegenen vulkanischen Inselgruppe gelangt auf natürliche Art und Weise Eisen in den Ozean – und das mit überraschenden Folgen: Die natürliche Eisendüngung bewirkt, dass am Ende mehr Kalkschalen in die Tiefsee gelangen als abgestorbenes Phytoplankton. Ein Prozess, der tiefgreifende Auswirkungen darauf hat, wie viel Kohlendioxid der Ozean bei verstärktem Algenwachstum speichern kann.

„Wenn diese Kalkschalen entstehen und zum Meeresgrund sinken, beeinflussen sie den Kohlendioxid-Haushalt der obersten Wasserschichten für Hunderte bis Tausende von Jahren. Unsere Untersuchungen lassen vermuten, dass der durch das Eisen angeregte Export der Kalkschalen dazu führt, dass in einer natürlich gedüngten Meeresregion zehn bis 30 Prozent weniger Kohlendioxid gespeichert wird als bisher angenommen. Wir wissen allerdings nicht, ob dies auch der Fall wäre, wenn ein Gebiet künstlich mit Eisen gedüngt wird“, erklärt Dr. Ian Salter.

Interessanterweise stellten die Forscher bei ihren Untersuchungen außerdem fest, dass der gestiegene Export von Kalkschalen nicht nur auf die größere Anzahl kalkbildender Organismen zurückzuführen ist. „In unseren Proben aus den Sedimentfallen haben wir vermehrt Arten gefunden, die größere Kalkschalen bauen und somit jeweils auch mehr Kohlendioxid freisetzen“, erklärt der Biogeochemiker. Eisendüngung wirkt sich somit auch auf die Artenzusammensetzung eines Lebensraumes aus. Damit löst sie eine Kettenreaktion aus, die schließlich das Klima beeinflussen kann. „Es ist allerdings wichtig zu beachten, dass sich unsere Ergebnisse nur auf eine bestimmte Region im Südpolarmeer beziehen. Die Effekte der kalkbildenden Organismen können sehr unterschiedlich sein, je nachdem um welche Art es sich handelt und wo im Ozean sie leben“, sagt Dr. Ian Salter.

In Folgeprojekten will Dr. Ian Salter nun den Transport von Phytoplankton und Kalkschalen bildenden Organismen in weiteren, natürlich gedüngten Meeresgebieten untersuchen – zum Beispiel rund um die Inselgruppen der Kerguelen und Südgeorgien sowie im Arktischen Ozean, wo sich das zurückgehende Meereis zusätzlich auf die biologische Kohlenstoffpumpe auswirken könnte.

Hinweise für Redaktionen: Das Paper erscheint am 10. November 2014 mit dem Originaltitel „Carbonate counter pump stimulated by natural iron fertilization in the Polar Frontal Zone“ im Fachmagazin nature geoscience. DOI: 10.1038/ngeo2285. Bitte nennen Sie nature geoscience als Quelle.

Bildmaterial zur Pressemitteilung finden Sie hier: http://www.awi.de/de/aktuelles_und_presse/pressemitteilungen/

Ihr Ansprechpartner für die Studie am Alfred-Wegener-Institut ist Dr. Ian Salter (Tel.: +49 471 4831-2386; E-Mail: Ian.Salter(at)awi.de). Bitte beachten Sie, dass Herr Salter ausschließlich Englisch spricht.

Ihre Ansprechpartnerin in der AWI-Pressestelle ist Kristina Bär (Tel.: 0471 4831-2139; E-Mail: medien(at)awi.de).


Folgen Sie dem Alfred-Wegener-Institut auf Twitter und Facebook. So erhalten Sie alle aktuellen Nachrichten sowie Informationen zu kleinen Alltagsgeschichten aus dem Institutsleben.

Das Alfred-Wegener-Institut forscht in der Arktis, Antarktis und den Ozeanen der mittleren und hohen Breiten. Es koordiniert die Polarforschung in Deutschland und stellt wichtige Infrastruktur wie den Forschungseisbrecher Polarstern und Stationen in der Arktis und Antarktis für die internationale Wissenschaft zur Verfügung. Das Alfred-Wegener-Institut ist eines der 18 Forschungszentren der Helmholtz-Gemeinschaft, der größten Wissenschaftsorganisation Deutschlands.

Ralf Röchert | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.awi.de

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Von der Bottnischen See bis ins Kattegat – Der Klimageschichte der Ostsee auf der Spur
28.03.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Einfluss der Sonne auf den Klimawandel erstmals beziffert
27.03.2017 | Schweizerischer Nationalfonds SNF

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Von Agenten, Algorithmen und unbeliebten Wochentagen

28.03.2017 | Unternehmensmeldung

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit