Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Starschuss für BIOACID - Weltweit erstes nationales Forschungsprogramm zur Ozeanversauerung

01.09.2009
Kohlendioxid lässt nicht nur die Temperaturen in der Atmosphäre steigen, sondern auch die Ozeane saurer werden. Erst vor wenigen Jahren sind Meereswissenschaftler auf diese Entwicklung aufmerksam geworden.

Die weitreichenden Folgen für Organismen - von winzigen Einzellern über Korallen und Fischen bis hin zu Walen - werden nun fieberhaft erforscht. Mit BIOACID übernimmt Deutschland eine Vorreiterrolle in der internationalen Meeresforschung. Federführend für das Projekt ist das Leibniz-Institut für Meereswissenschaften (IFM-GEOMAR) in Kiel.

BIOACID - der Name ist Programm. Die Bezeichnung des neuen vom Bundesministerium für Bildung und Forschung (BMBF) mit 8,5 Millionen Euro geförderten Verbundprojekts kommt von der englischen Abkürzung für Biological Impacts of Ocean ACIDification. Der Begriff umschreibt die zwei großen Schwerpunkte: "ACID" ist der englische Begriff für Säure und "BIO" steht für Biologie, also die Lebewesen im Meer. Am 1. September nehmen über 100 Wissenschaftler und Techniker aus 14 Partnerinstitutionen sowie einem Unternehmen aus dem Bereich der Sensortechnologie ihre Arbeit in BIOACID auf.

Professor Ulf Riebesell, Meeresbiologe am IFM-GEOMAR und Koordinator des Verbundprojekts, freut sich auf die Herausforderung: "Mit BIOACID wird der hohe Stellenwert der Klimafolgenforschung in Deutschland deutlich, in diesem Fall die Auswirkungen auf die Ozeane und seine Bewohner. Mit dieser Förderung können wir ganz neue Wege in der Erforschung eines hochaktuellen Themas bestreiten."

Die zunehmende Versauerung der Ozeane durch von Menschen gemachtes Kohlendioxid lässt sich bereits heute zweifelsfrei belegen. Die Geschwindigkeit, mit der der Säuregrad des Meerwassers aktuell steigt, ist dabei beispiellos in den vergangenen 20 Millionen Jahren. Welche weitreichenden Konsequenzen dieser Prozess für die Ökosysteme im Meer und damit auch für den Menschen birgt, ist allerdings noch weitgehend unklar. Von der Fischerei bis hin zum Tourismus - viele Wirtschaftsbranchen, die ihren Lebensunterhalt vom Meer erzielen, werden von der Entwicklung betroffen sein.

Unter dem Dach von BIOACID werden Meeresbiologen, -chemiker und -physiker sowie Molekularbiologen, Paläontologen, Mediziner und Mathematiker zu verschiedenen Aspekten der Ozeanversauerung kooperieren. Auf dem Gebiet der Meerestechnik werden Ingenieure hochpräzise Messmethoden entwickeln. Die Forschungsaktivitäten konzentrieren sich dabei auf die Heimatmeere Nord- und Ostsee, sowie durch Ozeanversauerung besonders bedrohte Ökosysteme der Polargebiete und der Tropen. Ein beträchtlicher Teil der Finanzierung fließt in die Qualifizierung von Nachwuchswissenschaftlern. Das Verbundprojekt ist zunächst über einen Zeitraum von drei Jahren angelegt. Von der Gesamtfördersumme fließen 2,5 Millionen Euro an das Kieler Leibniz-Institut für Meereswissenschaften.

Das deutsche Verbundprojekt wird mit einem in Großbritannien im Jahr 2010 beginnenden nationalen Forschungsprogramm zur Ozeanversauerung eng zusammenarbeiten. Auch in den USA ist man bemüht, das dort in Vorbereitung befindliche Forschungsprogramm zur Ozeanversauerung mit den europäischen Programmen abzustimmen und zu vernetzen. Dass Deutschland bei der Erforschung der Ozeanversauerung eine Vorreiterrolle einnimmt, kommt nicht von ungefähr. Bereits 2006 hat der Wissenschaftliche Beirat der Bundesregierung Globale Umweltveränderungen (WBGU) in einem Sondergutachten auf die Gefährdung der marinen Ökosysteme durch die zunehmende Versauerung des Meeres hingewiesen. Auch bei der Entwicklung und Umsetzung des EU Projekts zur Ozeanversauerung, EPOCA, spielen deutsche Wissenschaftler eine führende Rolle.

Projektpartner:
Koordination: Leibniz-Institut für Meereswissenschaften IFM-GEOMAR, Kiel
Alfred-Wegener-Institut für Polar- und Meeresforschung, Bremerhaven
Christian-Albrechts-Universität zu Kiel
Heinrich-Heine-Universität, Düsseldorf
Jacobs-University, Bremen
Leibniz-Institut für Gewässerökologie und Binnenfischerei, Berlin
Leibniz-Institut für Ostseeforschung Warnemünde
Max-Planck-Institut für Marine Mikrobiologie, Bremen
PreSens Precision Sensing GmbH, Regensburg
Ruhr-Universität Bochum
Universität Bremen
Universität Hamburg
Universität Rostock
Westfälische Wilhelms - Universität Münster
Ansprechpartner:
Prof. Ulf Riebesell (Wissenschaftlicher Koordinator), Tel. 0431 600-4444, uriebesell@ifm-geomar.de
Dr. Andreas Villwock (Öffentlichkeitsarbeit), Tel. 0431 600-2802,
avillwock@ifm-geomar.de

Dr. Andreas Villwock | idw
Weitere Informationen:
http://bioacid.ifm-geomar.de
http://www.ifm-geomar.de

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Eine detaillierte Waldkarte des blauen Planeten
26.09.2017 | Friedrich-Schiller-Universität Jena

nachricht In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste lichtgetriebene Stromquelle der Welt

Die Stromregelung ist eine der wichtigsten Komponenten moderner Elektronik, denn über schnell angesteuerte Elektronenströme werden Daten und Signale übertragen. Die Ansprüche an die Schnelligkeit der Datenübertragung wachsen dabei beständig. In eine ganz neue Dimension der schnellen Stromregelung sind nun Wissenschaftler der Lehrstühle für Laserphysik und Angewandte Physik an der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) vorgedrungen. Ihnen ist es gelungen, im „Wundermaterial“ Graphen Elektronenströme innerhalb von einer Femtosekunde in die gewünschte Richtung zu lenken – eine Femtosekunde entspricht dabei dem millionsten Teil einer milliardstel Sekunde.

Der Trick: die Elektronen werden von einer einzigen Schwingung eines Lichtpulses angetrieben. Damit können sie den Vorgang um mehr als das Tausendfache im...

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Im Spannungsfeld von Biologie und Modellierung

26.09.2017 | Veranstaltungen

Archaeopteryx, Klimawandel und Zugvögel: Deutsche Ornithologen-Gesellschaft tagt an der Uni Halle

26.09.2017 | Veranstaltungen

Unsere Arbeitswelt von morgen – Polarisierendes Thema beim 7. Unternehmertag der HNEE

26.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Europas erste Testumgebung für selbstfahrende Züge entsteht im Burgenland

26.09.2017 | Verkehr Logistik

Nerven steuern die Bakterienbesiedlung des Körpers

26.09.2017 | Biowissenschaften Chemie

Mit künstlicher Intelligenz zum chemischen Fingerabdruck

26.09.2017 | Biowissenschaften Chemie