Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schneeforschung - Lawinenwarnung mit GPS und Radar

04.05.2015

LMU-Geographen entwickeln mit Schweizer Forschern ein neues System zur Verbesserung der Lawinen- und Hochwasservorhersage, das zwei physikalische Methoden kombiniert und direkt in Hanglagen eingesetzt werden kann.

Für die Vorhersage der Lawinengefahr sowie für Abflussprognosen in alpinen Einzugsgebieten sind vor allem zeitlich hochaufgelöste Daten über den Feuchtgehalt der Schneedecke und die Schneemenge relevant.

Ein Team um Professor Wolfram Mauser und Franziska Koch vom Department für Geographie der LMU sowie Dr. Jürg Schweizer und Lino Schmid vom WSL Institut für Schnee und Lawinenforschung SLF in Davos kombinieren zwei unterschiedliche Messmethoden, wodurch erstmals kontinuierlich und nicht destruktiv wichtige Schneedaten, potentiell auch in Hanglagen, erhoben werden können. Darüber berichten die Forscher aktuell in der Fachzeitschrift Geophysical Research Letters.

Die LMU-Forscher haben eine neue Methode entwickelt und vor wenigen Monaten im Journal Sensors veröffentlicht, mit der mithilfe von kostengünstigen GPS-Empfängern der Schmelzbeginn im Frühjahr und der volumetrische Feuchtgehalt der Schneedecke kontinuierlich bestimmt werden können: Sie analysieren die Stärke der GPS-Signale und ziehen daraus Rückschlüsse auf die Feuchtigkeit des Schnees.

„Je schwächer das empfangene Signal unter der Schneedecke ist, desto feuchter ist der Schnee. Mithilfe dieser Daten lassen sich Nassschneelawinen und mögliche Hochwässer, die durch die Schneeschmelze verursacht werden können, besser vorhersagen. Da die GPS-Daten frei verfügbar sind und die Geräte sehr kostengünstig und leicht zu installieren sind, ist eine Ausbringung mehrerer Sensoren als Netzwerk, zum Beispiel zur Unterstützung der Hochwasservorhersage, gut denkbar“, sagt Wolfram Mauser.

Neuer Ansatz zur nicht destruktiven Messung unterhalb der Schneedecke

Nun haben die LMU-Geographen ihre Methode erstmals mit Messungen eines vom SLF betriebenen Bodenradars verglichen und kombiniert. Das Forscherteam hat beide Systeme über zwei Winterperioden auf einem Testfeld am Weissflujoch bei Davos auf 2540 Metern Höhe parallel laufen lassen. Noch vor dem ersten Schneefall vergruben sie ein Radargerät in einer Kiste im Boden und legten die kleinen, nur vier mal vier Zentimeter großen GPS-Antennen am Boden aus.

Während mehrerer Monate mit kontinuierlicher Schneebedeckung verglichen sie die Daten, die die Geräte empfingen. „Generell sind sowohl das GPS als auch das Radar eines der ersten Systeme, die nur unter Zuhilfenahme von extern gemessener Schneehöhe den Feuchtegehalt kontinuierlich und ohne Zerstörung der Schneedecke messen können. Beide Systeme lieferten in sehr guter Übereinstimmung zeitlich hochaufgelöste Daten über den Feuchtgehalt des Schnees sowie darüber, wann der Schnee im Frühjahr tagsüber schmilzt und in der Nacht wieder gefriert“, sagt Franziska Koch.

Die Messungen des Bodenradars und der GPS-Empfänger wurden zudem miteinander kombiniert, wodurch die drei essenziellen Schneeparameter Schneewasseräquivalent, das angibt, welche Wassermenge entsteht, wenn man ein Schneepaket schmilzt, Schneehöhe und der Feuchtegehalt völlig ohne externe Informationen kontinuierlich ermittelt werden konnten.

„Der große Vorteil ist, dass beide Geräte von unterhalb der Schneedecke messen. Daher können sie auch in möglichen Lawinenhängen installiert werden und dort direkt die Schneeparameter bestimmen. Dies ist bislang mit keiner konventionellen Schneemessung möglich“, sagt Franziska Koch.

Bislang werden für die Lawinenvorhersage beispielsweise Schneehöhensensoren eingesetzt, die an Stangen installiert sind und bei einem Lawinenabgang möglicherweise zerstört werden könnten. Andere Schneemessgeräte eignen sich nur für flache Gebiete und manuelle Messungen können in Lawinenrisikogebieten aus Sicherheitsgründen nicht durchgeführt werden. In einem nächsten Schritt wollen die Forscher nun auch die Schneemenge allein mithilfe der mit den GPS-Empfängern gewonnenen Daten berechnen.

(Geophysical Research Letters, doi: 10.1002/2015GL063732)

(Sensors, doi:10.3390/s141120975)

Kontakt:
Franziska Koch
Lehrstuhl für Geographie und geographische Fernerkundung der LMU
Tel.: 089 / 2180 - 6687
E-Mail: f.koch@iggf.geo.uni-muenchen.de

Publikation:
Lino Schmid und Franziska Koch:
A novel sensor combination (upGPR – GPS) to continuously and non-destructively derive snow cover properties
In: Geophysical Research Letters, doi: 10.1002/2015GL063732

Luise Dirscherl | Ludwig-Maximilians-Universität München
Weitere Informationen:
http://www.uni-muenchen.de/

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Unter hohem Druck elastisch: Bayreuther Forscher erschließen Zusammensetzung des Erdmantels
30.03.2017 | Universität Bayreuth

nachricht Von der Bottnischen See bis ins Kattegat – Der Klimageschichte der Ostsee auf der Spur
28.03.2017 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE