Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schmelzendes Gestein - Forscher haben die Entstehung von "tiefen" Erdbeben entschlüsselt

28.01.2009
Wie entstehen Erdbeben in großen Tiefen? Diese Frage beantworten Wissenschafter um Dr. Timm John vom Institut für Mineralogie der Universität Münster anhand einer innovativen Kombination von Gelände- und Laborarbeit mit numerischen Computersimulationen.

Die Forscher aus Münster, Kiel und Oslo (Norwegen) stellen ihre Ergebnisse in der aktuellen Ausgabe der renommierten Fachzeitschrift Nature Geoscience vor.

Die Grenzen der tektonischen Platten der Erde zeichnen sich durch eine sehr hohe Erdbebenaktivität aus. Diese kann ihren Ursprung in wenigen Kilometern, aber auch in mehreren hundert Kilometern Tiefe haben. Wenn sich Platten aufeinander zu bewegen und sich an den Rändern übereinander schieben, treten an diesen Stellen häufig Erdbeben in Tiefen von mehr als 50 Kilometern unter der Erdoberfläche auf.

„Die Mechanismen von ‚flachen' Erdbeben, die in einer Tiefe von bis zu 50 Kilometern entstehen, sind sehr gut bekannt - sie werden auf Brüche der sich spröde verhaltenden Erdplatten zurückgeführt", so John. „Die Ursachen für tiefere Erdbeben dagegen sind bis zum heutigen Tage unklar." In der Regel verhalten sich Gesteine unter den Bedingungen in der Tiefe plastisch und nicht spröde. Im Zusammenhang mit Erdbeben sollen jedoch auch hier Brüche im Gestein eine Rolle spielen, so die gängige Annahme.

Bei Geländearbeiten in Westnorwegen fanden John und seine Kollegen vom „Center for Physics of Geological Processes" der Universität Oslo in dem von ihnen untersuchten Gestein Scherzonen, die auf plastische Deformation zurückzuführen sind. Zudem waren auch Erdbebenstörungszonen vorhanden, die nach bisherigem Stand der Forschung als Sprödbruchstrukturen interpretiert würden, nach den neuen Erkenntnissen der Wissenschaftler aber andere Ursachen haben: „Unsere Untersuchung hat gezeigt, dass sich tiefere Erdbeben in vielen Fällen durch Schererwärmungen des Gesteins erklären lassen", so John.

Dabei führt die Erwärmung, die sich durch anfangs sehr langsame Deformation des Gesteins entlang entstehender Scherzonen bildet, dazu, dass das Gestein immer weicher und damit deformierbarer wird. Bedingt durch die zunehmende Deformation wird es wiederum wärmer. Dieser sich selbst verstärkende Prozess führt schließlich dazu, dass das Gestein entlang einer sehr dünnen Zone so heiß wird, dass es zu schmelzen beginnt. Auf diesem geschmolzenen Gestein kann sich dann die ganze gespeicherte Spannung mit seismischer Geschwindigkeit entladen - es kommt zum Erdbeben.

„Die Simulationen, bei denen die im Gelände und im Labor gewonnenen Daten berücksichtigt wurden, haben auch gezeigt, dass sich die Scherzonen und Erdbebenstörungszonen durch den gleichen Prozess gebildet haben", so John. „Ganz geringe Unterschiede in dem Gestein entscheiden, ob sich eine Scherzone bildet oder ob sich die Deformationsstruktur gar zu einer Erdbebenstörungszone entwickelt."

Links:

Timm John / Institut für Mineralogie
http://www.uni-muenster.de/Mineralogie/personen/john.html
Zusammenfassung der Publikation
http://www.nature.com/ngeo/journal/vaop/ncurrent/abs/ngeo419.html

Christina Heimken | Universität Münster
Weitere Informationen:
http://www.uni-muenster.de

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Stabile Gashydrate lösen Hangrutschung aus
19.02.2018 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

nachricht Warum der Meeresboden in Bewegung gerät
13.02.2018 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Im Focus: Quantenbits per Licht übertragen

Physiker aus Princeton, Konstanz und Maryland koppeln Quantenbits und Licht

Der Quantencomputer rückt näher: Neue Forschungsergebnisse zeigen das Potenzial von Licht als Medium, um Informationen zwischen sogenannten Quantenbits...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

Aachener Optiktage: Expertenwissen in zwei Konferenzen für die Glas- und Kunststoffoptikfertigung

19.02.2018 | Veranstaltungen

Konferenz "Die Mobilität von morgen gestalten"

19.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Highlight der Halbleiter-Forschung

20.02.2018 | Physik Astronomie

Wie verbessert man die Nahtqualität lasergeschweißter Textilien?

20.02.2018 | Materialwissenschaften

Der Bluthochdruckschalter in der Nebenniere

20.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics