Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schmelzendes Gestein - Forscher haben die Entstehung von "tiefen" Erdbeben entschlüsselt

28.01.2009
Wie entstehen Erdbeben in großen Tiefen? Diese Frage beantworten Wissenschafter um Dr. Timm John vom Institut für Mineralogie der Universität Münster anhand einer innovativen Kombination von Gelände- und Laborarbeit mit numerischen Computersimulationen.

Die Forscher aus Münster, Kiel und Oslo (Norwegen) stellen ihre Ergebnisse in der aktuellen Ausgabe der renommierten Fachzeitschrift Nature Geoscience vor.

Die Grenzen der tektonischen Platten der Erde zeichnen sich durch eine sehr hohe Erdbebenaktivität aus. Diese kann ihren Ursprung in wenigen Kilometern, aber auch in mehreren hundert Kilometern Tiefe haben. Wenn sich Platten aufeinander zu bewegen und sich an den Rändern übereinander schieben, treten an diesen Stellen häufig Erdbeben in Tiefen von mehr als 50 Kilometern unter der Erdoberfläche auf.

„Die Mechanismen von ‚flachen' Erdbeben, die in einer Tiefe von bis zu 50 Kilometern entstehen, sind sehr gut bekannt - sie werden auf Brüche der sich spröde verhaltenden Erdplatten zurückgeführt", so John. „Die Ursachen für tiefere Erdbeben dagegen sind bis zum heutigen Tage unklar." In der Regel verhalten sich Gesteine unter den Bedingungen in der Tiefe plastisch und nicht spröde. Im Zusammenhang mit Erdbeben sollen jedoch auch hier Brüche im Gestein eine Rolle spielen, so die gängige Annahme.

Bei Geländearbeiten in Westnorwegen fanden John und seine Kollegen vom „Center for Physics of Geological Processes" der Universität Oslo in dem von ihnen untersuchten Gestein Scherzonen, die auf plastische Deformation zurückzuführen sind. Zudem waren auch Erdbebenstörungszonen vorhanden, die nach bisherigem Stand der Forschung als Sprödbruchstrukturen interpretiert würden, nach den neuen Erkenntnissen der Wissenschaftler aber andere Ursachen haben: „Unsere Untersuchung hat gezeigt, dass sich tiefere Erdbeben in vielen Fällen durch Schererwärmungen des Gesteins erklären lassen", so John.

Dabei führt die Erwärmung, die sich durch anfangs sehr langsame Deformation des Gesteins entlang entstehender Scherzonen bildet, dazu, dass das Gestein immer weicher und damit deformierbarer wird. Bedingt durch die zunehmende Deformation wird es wiederum wärmer. Dieser sich selbst verstärkende Prozess führt schließlich dazu, dass das Gestein entlang einer sehr dünnen Zone so heiß wird, dass es zu schmelzen beginnt. Auf diesem geschmolzenen Gestein kann sich dann die ganze gespeicherte Spannung mit seismischer Geschwindigkeit entladen - es kommt zum Erdbeben.

„Die Simulationen, bei denen die im Gelände und im Labor gewonnenen Daten berücksichtigt wurden, haben auch gezeigt, dass sich die Scherzonen und Erdbebenstörungszonen durch den gleichen Prozess gebildet haben", so John. „Ganz geringe Unterschiede in dem Gestein entscheiden, ob sich eine Scherzone bildet oder ob sich die Deformationsstruktur gar zu einer Erdbebenstörungszone entwickelt."

Links:

Timm John / Institut für Mineralogie
http://www.uni-muenster.de/Mineralogie/personen/john.html
Zusammenfassung der Publikation
http://www.nature.com/ngeo/journal/vaop/ncurrent/abs/ngeo419.html

Christina Heimken | Universität Münster
Weitere Informationen:
http://www.uni-muenster.de

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Wasserkühlung für die Erdkruste - Meerwasser dringt deutlich tiefer ein
21.11.2017 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

nachricht Tonmineral bewässert Erdmantel von innen
20.11.2017 | Deutsches Elektronen-Synchrotron DESY

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Tagung widmet sich dem Thema Autonomes Fahren

21.11.2017 | Veranstaltungen

Neues Elektro-Forschungsfahrzeug am Institut für Mikroelektronische Systeme

21.11.2017 | Veranstaltungen

Raumfahrtkolloquium: Technologien für die Raumfahrt von morgen

21.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wasserkühlung für die Erdkruste - Meerwasser dringt deutlich tiefer ein

21.11.2017 | Geowissenschaften

Eine Nano-Uhr mit präzisen Zeigern

21.11.2017 | Physik Astronomie

Zentraler Schalter

21.11.2017 | Biowissenschaften Chemie