Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Schicksal der Wälder: Riesige Mengen Holzkohle enden im Ozean

19.04.2013
Ein internationales Team von Wissenschaftern um Rudolf Jaffé von der Florida International University in Miami und Thorsten Dittmar vom Max-Planck-Institut für Marine Mikrobiologie haben ein langjähriges Rätsel um das Schicksal der Holzkohle in Böden gelöst.

Auf den ersten Blick ist es ein unspektakuläres Thema, doch es geht ums Klima. Mit diesen neuen Erkenntnissen können die Forscher das globale Kohlenstoffbudget besser kalkulieren und somit helfen, Klimafolgen abzuschätzen und letztendlich zu mildern. Bisher waren nur grobe Schätzungen über den Verbleib der Holzkohle im Boden möglich und wie sich jetzt herausstellt, sind die meisten dieser Schätzungen falsch.


Waldbrand im borealen Nadelwald
Photo Stefan Doerr, Swansea University

„Die meisten Forscher dachten, Holzkohle sei resistent und würden für immer im Boden verbleiben. Aber wenn das so wäre, wären die Böden schwarz“, sagt Jaffé.

Die in der Natur vorkommende Holzkohle entsteht vor allem bei Waldbränden und endet zum größten Teil im Boden. Auch bei der Verbrennung von fossilen Brennstoffen und Biomasse bleibt sie als Rückstand übrig.

“Vom chemischen Standpunkt aus gesehen hatte niemand erwartet, dass sich Holzkohle in Wasser lösen würde. Doch sie sammelt sich eben nicht unbegrenzt im Boden an, wie wir alle lange dachten,” sagt Jaffé. „Regenfälle mobilisieren Holzkohle aus dem Boden und über Feuchtgebiete und Flüsse gelangt sie schließlich in den Ozean.“

Sein Kollege Thorsten Dittmar, Leiter der Max-Planck-Forschungsgruppe für Marine Geochemie an der Universität Oldenburg, forscht wie Jaffé schon lange an diesem Thema, allerdings aus Sicht eines Meeresforschers.

Thorsten Dittmar erklärt: “Unser ursprünglicher Ansatz lag im Ozean. Doch um den Ozean verstehen zu können, müssen wir auch die Prozesse an Land verstehen, denn von dorther kommt über die Flüsse die organische Fracht. Deshalb hat unser internationales Team 174 Proben aus Flüssen der ganzen Welt wie dem Amazonas, dem Kongo, dem Jangtse, aber auch der Arktis entnommen und den Gehalt an gelöster Holzkohle bestimmt. Wir waren überrascht, dass in allen Proben der Holzkohleanteil immer 10 % der Gesamtmenge an gelösten organischen Kohlenstoffverbindungen entsprach. Mit diesem Wert gelang es uns dann, aus älteren wissenschaftlichen Studien aus der Fracht an gelösten organischen Verbindungen die globale Holzkohlefracht abzuschätzen.”

Zur Studie beigetragen haben weitere Forscher aus dem Skidaway Institute of Oceanography in Georgia, dem Woods Hole Research Center in Massachusetts, dem USDA Forest Service und der University of Helsinki in Finland. Ihre Ergebnisse lassen den Schluss zu, dass Holzkohle es bis in die globalen Gewässer schafft. Dittmar kommentiert:” Mit unserer Studie konnten wir zeigen, dass Feuer und Waldbrände zum globalen Kohlenstoffkreislauf dazugehören.”

Diese Entdeckung wirke sich auch auf das Thema Bioengineering aus, sind sich die Autoren sicher. Das globale Kohlenstoffbudget setzt sich zusammen aus den Einträgen aus kohlenstoffproduzierenden Quellen (z. B. Pflanzen) und den Abbau-prozessen, bei denen organischer Kohlenstoff in Kohlendioxid umgesetzt wird. Für die Holzkohle in den Böden gelte, dass die Holzkohle produzierenden Prozesse wie Waldbrände Schritt halten mit dem Abtransport ins Meer, sagen die Autoren der Studie.
Kritisch: Holzkohle als technischer Kohlenstoffspeicher und der Klimawandel
Während die Konsequenzen des Holzkohleeintrags in die Ozeane für die Umwelt noch nicht bekannt sind, betonen die Autoren, dass ihre Ergebnisse in die Überlegungen zur technischen Kohlenstoffspeicherung eingehen sollten.

Kohlenstoffspeicherung im Boden in Form von Biokohle ist solch eine Technik.

Holzkohle aus Pflanzen wird dem Boden beigemischt und soll so als Kohlenstoffspeicher dienen. Daher weisen Jaffé und Dittmar auf die Gefahr hin, dass diese Holzkohle sich wieder aus dem Boden löst. Beide Forscher wollen in Zukunft weiter an diesem Projekt arbeiten. Nachdem sie jetzt gezeigt haben, dass die Holzkohle aus dem Boden im Ozean endet, lautet nun die Frage, wie dieses passiert und welche Konsequenzen dies für die Umwelt hat. Je besser man diese Prozesse verstehe, desto besser sind die Chancen, eine optimale Technik der Kohlenstoffspeicherung entwickeln zu können, meinen die Autoren.

Weitere Informationen

Dr. Thorsten Dittmar
Max-Planck-Forschungsgruppe Marine Geochemie, Institut für Chemie und Biologie des Meeres (ICBM), Carl-von-Ossietzky-Strasse 9-11
D-26129 Oldenburg, Tel.: 0441 798-3602, E-Mail: tdittmar@mpi-bremen.de

Dr. Jutta Niggemann
Max-Planck-Forschungsgruppe Marine Geochemie, Institut für Chemie und Biologie des Meeres (ICBM), Carl-von-Ossietzky-Strasse 9-11, D-26129 Oldenburg, Tel.: 0441 798-3365, E-Mail: jniggema@mpi-bremen.de

Pressesprecher

Dr. Manfred Schlösser
Max-Planck-Institut für Marine Mikrobiologie, Celsiusstraße 1, D-28359 Bremen, Tel.: 0421 2028-704, E-Mail: mschloes@mpi-bremen.de

Originalveröffentlichung
Global Charcoal Mobilization from Soils via Dissolution and Riverine Transport to the Oceans

Rudolf Jaffé, Yan Ding, Jutta Niggemann, Anssi V. Vähätalo, Aron Stubbins, Robert G.M. Spencer, John Campbell, Thorsten Dittmar. Science 2013. DOI: 10.1126/science.1231476

Beteiligte Institute
Southeast Environmental Research Center (SERC), and Department
of Chemistry and Biochemistry, Florida International University (FIU),
Miami, FL 33199, USA.
Max Planck Research Group for Marine Geochemistry, Institute for Chemistry and Biology of the Marine Environment, UniversityOldenburg,
D-29129 Oldenburg, Germany.

Department of Environmental Science, University of Helsinki, 00014 Helsinki, Finland.
Department of Biological and Environmental Science, University of Jyväskylä,
40500 Jyväskylä, Finland

Skidaway Institute of Oceanography, 10 Ocean Science Circle, Savannah, GA 31411, USA.

Woods Hole Research Center, 149 Woods Hole Road, Falmouth,
MA 02540, USA.
U.S. Department of Agriculture Forest Service, Northern Research Station, Durham, NH 03824, USA.

Dr. Manfred Schloesser | Max-Planck-Institut
Weitere Informationen:
http://www.mpi-bremen.de

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen
18.08.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Klimawandel: Bäume binden im Alter große Mengen Kohlenstoff
17.08.2017 | Universität Hamburg

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie