Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Satellitentrio zur Erforschung des Erdmagnetfeldes

22.11.2013
SWARM-Satelliten mit Bilderbuchstart ins All gebracht

Im dichten Nebel hob eine russische Rockot-Rakete am 22.11.2013 pünktlich um 13 Uhr 02 Minuten und 15 Sekunden Mitteleuropäischer Zeit vom Kosmodrom Plesetsk ab. In der Spitze der Rakete: drei baugleiche Satelliten zur Messung des Erdmagnetfelds.


SWARM-Konstellation (Abbildung: ESA/AOES Medialab)

Nach gut anderthalb Stunden, um 14:37:48 MEZ konnte Erfolg gemeldet werden: alle drei Satelliten trennten sich problemlos von der Trägerrakete und es konnte über die Bodenstationen Kiruna (Schweden) und Longyearbyen/Spitzbergen (Norwegen) Funkkontakt mit ihnen aufgenommen werden. Wissenschaftler des GFZ und geladene Gäste beobachteten per Fernübertragung den Start der Mission mit dem Namen SWARM von der Europäischen Raumfahrtagentur ESA in Darmstadt.

Anlässlich des gelungenen Starts sagte Professor Johanna Wanka, Bundesministerin für Bildung und Forschung: „Wir freuen uns sehr, dass diese europäische Mission so gut gestartet ist. Das Magnetfeld der Erde ist unser Schutzschild vor der kosmischen Teilchenstrahlung. Es unterliegt aber natürlichen Schwankungen, sei es aus dem Erdinneren, sei es durch Ausbrüche auf der Sonne. Seine Funktion besser zu erforschen und das Weltraumwetter genauer zu erfassen, ermöglicht uns Rückschlüsse für das Leben auf unserem Planeten.“

Professor Reinhard Hüttl, der Vorstandsvorsitzende des Deutschen GeoForschungsZentrums GFZ, wies auf eine Potsdamer Erfolgsstory hin: „Die drei Satelliten sind direkte Entwicklungen aus der CHAMP-Mission des GFZ, die im Jahre 2000 gestartet wurde. CHAMP mit seinen Nachfolgern GRACE und SWARM erweist sich so als Gründervater einer ganzen Generation von Satelliten und weltraumgestützten Messverfahren.“

Ein Trio für’s Magnetfeld

SWARM ist eine Mission der ESA im Rahmen ihres „Living Planet“-Programms. „Der Satellitenschwarm - daher der Name - soll für mindestens vier Jahre aus dem All das Erdmagnetfeld mit bisher unerreichter Präzision vermessen,“ führt Professor Hüttl weiter aus. Dafür fliegen die drei Satelliten in optimierter Formation: zwei Satelliten (SWARM-A, SWARM-B) fliegen in 450 Kilometern Höhe mit 150 Kilometern Abstand nebeneinander her, der dritte (SWARM-C) steigt auf 530 Kilometer Höhe in eine höhere Umlaufbahn. Der Grund für diesen komplizierten Formationsflug liegt im Magnetfeld selbst: dieses wird erzeugt durch die Strömung elektrisch leitenden, flüssigen Eisens im äußeren Erdkern, 2900 Kilometer unter unseren Füßen.

Es wird beeinflusst durch die Leitfähigkeit und die Dynamik des darüber liegenden Erdmantels (bis rund 40 Kilometer unter der Erdoberfläche). Schließlich tragen noch die magnetisierten Gesteine der Erdkruste zum Erdmagnetfeld bei. Hinzu kommt, dass auch die Sonne und Ströme im erdnahen Weltraum von außen das Erdmagnetfeld beeinflussen. Will man diese einzelnen Bestandteile untersuchen, muss man dafür das vom Satelliten gemessene Gesamtsignal des Magnetfeldes in die einzelnen Bestandteile auftrennen.

„Das tiefer fliegende SWARM-Paar kann durch seinen Abstand von 150 Kilometern mit einem Stereo-Blick auf das Magnetfeld der Erdkruste schauen“, erläutert Professor Hermann Lühr, einer der drei Principle Investigators der Mission, Mitglied in der SWARM Mission Advisory Group und Leiter des SWARM-Projektbüros am GFZ. „So können wir diesen Bestandteil mit sehr hoher Genauigkeit analysieren.“ Der dritte, obere SWARM-Satellit kann wiederum die nach oben hin abnehmende Stärke des Magnetfeldes genauer bestimmen, zudem fliegt dieser Satellit in einem über die Zeit immer stärker zunehmenden Winkel zur Bahn des unteren Paars. Die Gesamtmessung wird ein Bild des Erdmagnetfeldes in einer bisher noch nie erreichten Präzision geben.

Quasi als Nebeneffekt ergibt sich die Möglichkeit, das Weltraumwetter genauer zu beobachten. Darunter versteht man durch Ausbrüche unserer Sonne, aber auch entfernter Sterne erzeugte magnetische Stürme, die unsere technische Zivilisation stören oder gar lahmlegen können. So erzeugte ein starker Sonnensturm im Jahr 1989 einen Zusammenbruch der Stromversorgung in Kanada.

Die Rolle des GFZ in der SWARM-Mission

Die Erforschung des Erdmagnetfeldes gehört zum Arbeitsprogramm des Deutschen GeoForschungsZentrums seit seiner Gründung. Zudem hat das GFZ durch seine eigenen Satellitenmissionen, insbesondere CHAMP und GRACE, Erfahrung mit Missionen dieser Art. Daher wurde vom Deutschen Zentrum für Luft- und Raumfahrt (DLR) das Swarm-Projektbüro am GFZ angesiedelt. Dieses Büro dient als Koordinierungsstelle und ist die Schnittstelle zur Nutzung der Swarm-Daten und –Datenprodukte. Es koordiniert in der Mission die deutschen Förderprogramme und die ESA-Ausschreibungen.

„Im Vorfeld dienten die aus der CHAMP- und GRACE-Mission gewonnenen Erfahrungen bei der technischen Unterstützung in Planung und Fertigung der Satelliten“, so Hermann Lühr (GFZ). „CHAMP war das Vorbild für die Swarm-Satellitenflotte.“ Das gilt auch für die Datenverarbeitung und Erstellung von höherwertigen Datenprodukten.

Hermann Lühr: „Die gewaltigen Mengen an Daten müssen aufbereitet, untersucht und zu konkreten Ergebnissen verdichtet werden. GFZ-Mitarbeiter mit Erfahrung aus den vorangegangenen Satellitenmissionen arbeiten im europäischen SCARF-Konsortium für die Erzeugung höherwertiger Datenprodukte, die zur unmittelbaren Nutzung geeignet sind.“ SCARF steht dabei für Satellite Constellation Application and Research Facility.

Zu den Satelliten

Die drei SWARM-Satelliten kosten zusammen rund 220 Millionen Euro, jeder einzelne wiegt 500 Kilogramm. In der Startrakete liegt ein vier Meter langer Messausleger eingeklappt auf dem Rücken des fünf Meter langen Satellitenkörpers. Dieser Messausleger wird einige Stunden nach dem Aussetzen der Satelliten, nachdem die Bordbetriebssysteme Stück für Stück angeschaltet wurden, ausgeklappt. Der Grund dafür ist, dass die Oberfläche der Satelliten mit Solarzellen zur Stromversorgung bestückt ist. Das durch den Strom erzeugte Magnetfeld würde aber die Messung stören, daher sind die Magnetfeld-Messgeräte auf dem Messausleger angebracht.

An der Spitze des Auslegers befindet sich das besonders empfindliche Gerät zur Messung der Magnetfeldstärke, in der Mitte des Auslegers die Sensoren zur Bestimmung der Richtung des Magnetfeldes. Hier sitzen auch die drei Sternsensoren, mit denen der Satellit seine Lage bestimmt und korrigiert.

Die drei Satelliten fliegen anfangs parallel auf einer Nord-Süd-Bahn mit etwa 88° Inklination. SWARM-C wird danach langsam mit 30° pro Jahr umgelenkt und fliegt dann in einem zunehmenden Winkel zur Umlaufbahn von SWARM-A und –B.

Bilder in druckfähiger Auflösung finden sich hier:
http://www.gfz-potsdam.de/medien-kommunikation/bildarchiv/gfz-satellitenmissionen/swarm/
Filme stehen zum Herunterladen unter:
ftp://ftp.gfz-potsdam.de/pub/incoming/PR/SWARM

Franz Ossing | GFZ Potsdam
Weitere Informationen:
http://www.gfz-potsdam.de

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Der steile Aufstieg der Berner Alpen
24.03.2017 | Universität Bern

nachricht Internationales Team um Oldenburger Meeresforscher untersucht Meeresoberfläche
21.03.2017 | Carl von Ossietzky-Universität Oldenburg

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise