Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Satellitentrio zur Erforschung des Erdmagnetfeldes

22.11.2013
SWARM-Satelliten mit Bilderbuchstart ins All gebracht

Im dichten Nebel hob eine russische Rockot-Rakete am 22.11.2013 pünktlich um 13 Uhr 02 Minuten und 15 Sekunden Mitteleuropäischer Zeit vom Kosmodrom Plesetsk ab. In der Spitze der Rakete: drei baugleiche Satelliten zur Messung des Erdmagnetfelds.


SWARM-Konstellation (Abbildung: ESA/AOES Medialab)

Nach gut anderthalb Stunden, um 14:37:48 MEZ konnte Erfolg gemeldet werden: alle drei Satelliten trennten sich problemlos von der Trägerrakete und es konnte über die Bodenstationen Kiruna (Schweden) und Longyearbyen/Spitzbergen (Norwegen) Funkkontakt mit ihnen aufgenommen werden. Wissenschaftler des GFZ und geladene Gäste beobachteten per Fernübertragung den Start der Mission mit dem Namen SWARM von der Europäischen Raumfahrtagentur ESA in Darmstadt.

Anlässlich des gelungenen Starts sagte Professor Johanna Wanka, Bundesministerin für Bildung und Forschung: „Wir freuen uns sehr, dass diese europäische Mission so gut gestartet ist. Das Magnetfeld der Erde ist unser Schutzschild vor der kosmischen Teilchenstrahlung. Es unterliegt aber natürlichen Schwankungen, sei es aus dem Erdinneren, sei es durch Ausbrüche auf der Sonne. Seine Funktion besser zu erforschen und das Weltraumwetter genauer zu erfassen, ermöglicht uns Rückschlüsse für das Leben auf unserem Planeten.“

Professor Reinhard Hüttl, der Vorstandsvorsitzende des Deutschen GeoForschungsZentrums GFZ, wies auf eine Potsdamer Erfolgsstory hin: „Die drei Satelliten sind direkte Entwicklungen aus der CHAMP-Mission des GFZ, die im Jahre 2000 gestartet wurde. CHAMP mit seinen Nachfolgern GRACE und SWARM erweist sich so als Gründervater einer ganzen Generation von Satelliten und weltraumgestützten Messverfahren.“

Ein Trio für’s Magnetfeld

SWARM ist eine Mission der ESA im Rahmen ihres „Living Planet“-Programms. „Der Satellitenschwarm - daher der Name - soll für mindestens vier Jahre aus dem All das Erdmagnetfeld mit bisher unerreichter Präzision vermessen,“ führt Professor Hüttl weiter aus. Dafür fliegen die drei Satelliten in optimierter Formation: zwei Satelliten (SWARM-A, SWARM-B) fliegen in 450 Kilometern Höhe mit 150 Kilometern Abstand nebeneinander her, der dritte (SWARM-C) steigt auf 530 Kilometer Höhe in eine höhere Umlaufbahn. Der Grund für diesen komplizierten Formationsflug liegt im Magnetfeld selbst: dieses wird erzeugt durch die Strömung elektrisch leitenden, flüssigen Eisens im äußeren Erdkern, 2900 Kilometer unter unseren Füßen.

Es wird beeinflusst durch die Leitfähigkeit und die Dynamik des darüber liegenden Erdmantels (bis rund 40 Kilometer unter der Erdoberfläche). Schließlich tragen noch die magnetisierten Gesteine der Erdkruste zum Erdmagnetfeld bei. Hinzu kommt, dass auch die Sonne und Ströme im erdnahen Weltraum von außen das Erdmagnetfeld beeinflussen. Will man diese einzelnen Bestandteile untersuchen, muss man dafür das vom Satelliten gemessene Gesamtsignal des Magnetfeldes in die einzelnen Bestandteile auftrennen.

„Das tiefer fliegende SWARM-Paar kann durch seinen Abstand von 150 Kilometern mit einem Stereo-Blick auf das Magnetfeld der Erdkruste schauen“, erläutert Professor Hermann Lühr, einer der drei Principle Investigators der Mission, Mitglied in der SWARM Mission Advisory Group und Leiter des SWARM-Projektbüros am GFZ. „So können wir diesen Bestandteil mit sehr hoher Genauigkeit analysieren.“ Der dritte, obere SWARM-Satellit kann wiederum die nach oben hin abnehmende Stärke des Magnetfeldes genauer bestimmen, zudem fliegt dieser Satellit in einem über die Zeit immer stärker zunehmenden Winkel zur Bahn des unteren Paars. Die Gesamtmessung wird ein Bild des Erdmagnetfeldes in einer bisher noch nie erreichten Präzision geben.

Quasi als Nebeneffekt ergibt sich die Möglichkeit, das Weltraumwetter genauer zu beobachten. Darunter versteht man durch Ausbrüche unserer Sonne, aber auch entfernter Sterne erzeugte magnetische Stürme, die unsere technische Zivilisation stören oder gar lahmlegen können. So erzeugte ein starker Sonnensturm im Jahr 1989 einen Zusammenbruch der Stromversorgung in Kanada.

Die Rolle des GFZ in der SWARM-Mission

Die Erforschung des Erdmagnetfeldes gehört zum Arbeitsprogramm des Deutschen GeoForschungsZentrums seit seiner Gründung. Zudem hat das GFZ durch seine eigenen Satellitenmissionen, insbesondere CHAMP und GRACE, Erfahrung mit Missionen dieser Art. Daher wurde vom Deutschen Zentrum für Luft- und Raumfahrt (DLR) das Swarm-Projektbüro am GFZ angesiedelt. Dieses Büro dient als Koordinierungsstelle und ist die Schnittstelle zur Nutzung der Swarm-Daten und –Datenprodukte. Es koordiniert in der Mission die deutschen Förderprogramme und die ESA-Ausschreibungen.

„Im Vorfeld dienten die aus der CHAMP- und GRACE-Mission gewonnenen Erfahrungen bei der technischen Unterstützung in Planung und Fertigung der Satelliten“, so Hermann Lühr (GFZ). „CHAMP war das Vorbild für die Swarm-Satellitenflotte.“ Das gilt auch für die Datenverarbeitung und Erstellung von höherwertigen Datenprodukten.

Hermann Lühr: „Die gewaltigen Mengen an Daten müssen aufbereitet, untersucht und zu konkreten Ergebnissen verdichtet werden. GFZ-Mitarbeiter mit Erfahrung aus den vorangegangenen Satellitenmissionen arbeiten im europäischen SCARF-Konsortium für die Erzeugung höherwertiger Datenprodukte, die zur unmittelbaren Nutzung geeignet sind.“ SCARF steht dabei für Satellite Constellation Application and Research Facility.

Zu den Satelliten

Die drei SWARM-Satelliten kosten zusammen rund 220 Millionen Euro, jeder einzelne wiegt 500 Kilogramm. In der Startrakete liegt ein vier Meter langer Messausleger eingeklappt auf dem Rücken des fünf Meter langen Satellitenkörpers. Dieser Messausleger wird einige Stunden nach dem Aussetzen der Satelliten, nachdem die Bordbetriebssysteme Stück für Stück angeschaltet wurden, ausgeklappt. Der Grund dafür ist, dass die Oberfläche der Satelliten mit Solarzellen zur Stromversorgung bestückt ist. Das durch den Strom erzeugte Magnetfeld würde aber die Messung stören, daher sind die Magnetfeld-Messgeräte auf dem Messausleger angebracht.

An der Spitze des Auslegers befindet sich das besonders empfindliche Gerät zur Messung der Magnetfeldstärke, in der Mitte des Auslegers die Sensoren zur Bestimmung der Richtung des Magnetfeldes. Hier sitzen auch die drei Sternsensoren, mit denen der Satellit seine Lage bestimmt und korrigiert.

Die drei Satelliten fliegen anfangs parallel auf einer Nord-Süd-Bahn mit etwa 88° Inklination. SWARM-C wird danach langsam mit 30° pro Jahr umgelenkt und fliegt dann in einem zunehmenden Winkel zur Umlaufbahn von SWARM-A und –B.

Bilder in druckfähiger Auflösung finden sich hier:
http://www.gfz-potsdam.de/medien-kommunikation/bildarchiv/gfz-satellitenmissionen/swarm/
Filme stehen zum Herunterladen unter:
ftp://ftp.gfz-potsdam.de/pub/incoming/PR/SWARM

Franz Ossing | GFZ Potsdam
Weitere Informationen:
http://www.gfz-potsdam.de

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Seltener Weizenfund in bronzezeitlicher Lunch-Box aus dem Schweizer Hochgebirge
26.07.2017 | Max-Planck-Institut für Menschheitsgeschichte / Max Planck Institute for the Science of Human History

nachricht Grossmäuliger Fisch war nach Massenaussterben Spitzenräuber
26.07.2017 | Universität Zürich

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Robuste Computer für's Auto

26.07.2017 | Seminare Workshops

Läuft wie am Schnürchen!

26.07.2017 | Seminare Workshops

Leicht ist manchmal ganz schön schwer!

26.07.2017 | Seminare Workshops