Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Rostende Ur-Ozeane durch Bakterien

24.04.2013
Geomikrobiologen der Universität Tübingen finden Hinweise wie Mikroorganismen die weltgrößten Eisenerzvorräte gebildet haben

Wissenschaftler der Universität Tübingen können erstmals aufzeigen, wie Mikroorganismen zur Entstehung der weltgrößten Eisenerzvorräte beigetragen haben. Vor allem in Südafrika und Australien gibt es mächtige, Milliarden Jahre alte geologische Formationen, die zum Großteil aus Eisenoxid bestehen, also aus Mineralen wie sie aus der Rostbildung bekannt sind.


Eisenerzmine in Hamersley, Westaustralien
Foto: Professor K.O. Konhauser

Diese Eisenerze decken nicht nur einen Großteil des Weltbedarfs an Eisen, die Gesteinsformationen geben auch Hinweise auf die Entwicklung der Atmosphäre und des Klimas sowie der Aktivität von Mikroorganismen in der frühen Erdgeschichte.

Inwiefern Mikroorganismen im Ur-Ozean zur Bildung der Eisenablagerungen beigetragen haben, war bislang unbekannt. Ein internationales Forscherteam aus den USA, Kanada und Deutschland hat dazu nun neue Erkenntnisse in der Fachzeitschrift „Nature Communications“ veröffentlicht. Unter Leitung des Geomikrobiologen Professor Andreas Kappler vom Zentrum für angewandte Geowissenschaften der Universität Tübingen fanden die Wissenschaftler konkrete Hinweise darauf, welche Mikroorganismen an der Bildung der Eisenerze beteiligt waren und woran die verschiedenen mikrobiellen Stoffwechselprozesse an Gesteinen erkennbar sind.

Das Eisen im Ur-Ozean kam als gelöstes, reduziertes zweiwertiges Eisen [Fe(II)] aus heißen Quellen auf dem Ozeanboden. Der Großteil des heutigen Eisenerzes liegt aber als oxidiertes, dreiwertiges Eisen [Fe(III)] in Form von „Rostmineralen“ vor ‒ demnach musste das zweiwertige Eisen zur Ablagerung oxidiert werden. Das klassische Modell zur Entstehung der Eisenformationen beschreibt die chemische Oxidation des zweiwertigen Eisens aus diesen Quellen durch Sauerstoff, der von sogenannten Cyanobakterien („Blaualgen“) produziert wird. Diese Oxidation kann entweder chemisch erfolgen (wie bei der Rostbildung) oder durch Beteiligung sogenannter „mikroaerophiler eisenoxidierender Bakterien“.

Unter Wissenschaftlern wird jedoch diskutiert, wann in der Erdatmosphäre überhaupt ausreichend Sauerstoff durch Cyanobakterien gebildet wurde, um solche Eisenformationen zu bilden. Die ältesten bekannten Eisenerze stammen aus dem Präkambrium und sind bis zu 4 Milliarden Jahre alt (das Erdalter wird auf ca. 4,6 Milliarden Jahre geschätzt) ‒ zu diesem frühen Zeitpunkt der Erdgeschichte war aber nur sehr wenig bis gar kein Sauerstoff vorhanden. Die Bildung der ältesten gebänderten Eisenerze kann also nicht durch Sauerstoff erfolgt sein.

1993 wurden erstmals Bakterien gefunden, die keinen Sauerstoff benötigen und mit Hilfe von Lichtenergie das zweiwertige Eisen oxidieren („anoxygene phototrophe eisenoxidierende Bakterien“). In Studien (2005/2010) zeigte die Arbeitsgruppe um Professor Kappler bereits, dass diese Bakterien gelöstes zweiwertiges Eisen in Eisenoxide (Rost) umwandeln, wie sie in den Eisenerzen enthalten sind. Jetzt konnte das Tübinger Forscherteam nachweisen, dass sich anhand der Identität und strukturellen Eigenschaften von Eisenmineralen feststellen lässt, dass die Eisenformationen mikro-biell durch Eisenoxidierer und nicht durch von Cyanobakterien gebildeten Sauerstoff abgelagert wurden. Die Wissenschaftler setzten hierzu unterschiedliche Mengen an organischem Material zu-sammen mit Eisenmineralen in Goldkapseln hohen Temperaturen und Druck aus, um die Umwandlung der Minerale über die Erdgeschichte hinweg zu simulieren. Dabei entdeckten sie Strukturen von Eisenkarbonatmineralen (Siderit, FeCO3), wie sie tatsächlich in Eisenformationen gefunden wurden. Insbesondere konnten sie Eisenkarbonat-Strukturen unterscheiden, die entweder durch eine eher geringe Menge an organischen Verbindungen (mikrobielle Biomasse) oder mit einer größeren Menge gebildet wurden.

Durch ihre Arbeiten haben die Wissenschaftler nicht nur erstmals eindeutige Hinweise auf eine direkte Beteiligung von Mikroorganismen an der Ablagerung der ältesten Eisenformationen gefunden. Die Ergebnisse geben auch Hinweise darauf, dass in Flachwasserregionen des Ur-Ozeans eher große Mengen an sauerstoffbildenden Bakterien (Cyanobakterien) aktiv waren, während in der lichtdurchdrungenen (photischen) Tiefwasserzone eher eisenoxidierende Bakterien für die Ablagerung der Eisenformationen verantwortlich waren.

Die Forschungsergebnisse wurden von der Fachzeitschrift Nature Communications vorab online veröffentlicht (http://dx.doi.org/ 10.1038/ncomms2770): Koehler, I., Papineau, D., Konhauser, K.O., Kappler, A. (2013) Biological carbon precursor to dianetic siderite spherulites in banded iron formations. Nature Communications, in press.

Kontakt:

Prof. Dr. Andreas Kappler
Universität Tübingen
Mathematisch-Naturwissenschaftliche Fakultät
Zentrum für Angewandte Geowissenschaften/ Arbeitsgruppe Geomikrobiologie
Sigwartstrasse 10 ∙ 72076 Tübingen
Tel. +49 (7071) 29-74992
andreas.kappler[at]uni-tuebingen.de

Myriam Hönig | idw
Weitere Informationen:
http://www.uni-tuebingen.de
http://www.geo.uni-tuebingen.de/arbeitsgruppen/angewandte-geowissenschaften/forschungsbereich/geomikrobiologie/workgroup.html

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Nährstoffhaushalt einer neuentdeckten “Todeszone” im Indischen Ozean auf der Kippe
06.12.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Wichtiger Prozess für Wolkenbildung aus Gasen entschlüsselt
05.12.2016 | Leibniz-Institut für Troposphärenforschung e. V.

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weiterbildung zu statistischen Methoden in der Versuchsplanung und -auswertung

06.12.2016 | Seminare Workshops

Bund fördert Entwicklung sicherer Schnellladetechnik für Hochleistungsbatterien mit 2,5 Millionen

06.12.2016 | Förderungen Preise

Innovationen für eine nachhaltige Forstwirtschaft

06.12.2016 | Agrar- Forstwissenschaften