Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Röntgenlicht liefert Einblicke in die Ursachen von Vulkanausbrüchen

16.10.2012
Experimente am Paul Scherrer Institut bieten Einblicke in Vorgänge in vulkanischen Materialien, die darüber entscheiden wie heftig ein Vulkan ausbricht.

In dem Experiment wurde mit einem Lasersystem ein kleines Stück vulkanisches Material so aufgeheizt, dass darin Bedingungen entstanden, wie sie am Beginn eines Vulkanausbruchs herrschen. Die Forschenden nutzten dann Röntgenlicht, um in Echtzeit zu verfolgen, was in dem Gestein passiert, während es schmilzt.

Wesentlich für die Art einer Vulkaneruption ist die Geschwindigkeit, mit der sich Blasen im Vulkanmaterial bilden. Die Arbeit zeigt nun, dass die ersten Sekunden des Blasenwachstums über die Art der Eruption entscheiden.

Die Heftigkeit von Vulkanausbrüchen reicht von häufigen kleinen Eruptionen mit geringen Auswirkungen auf die Menschen und die Umwelt bis zu heftigen Eruptionen, die das Potenzial haben, ganze Zivilisationen zu zerstören. Auch wenn es verschiedene Faktoren gibt, die einen Vulkanausbruch auslösen, so spielt die Freisetzung von Wasser und Gasen aus dem geschmolzenen Gestein eine wichtige Rolle. Wenn das geschmolzene Gestein aus den Tiefen der Erde aufsteigt, erzeugt Wasser (und andere flüchtige Substanzen) Blasen im Gestein. Diese Blasen schwächen das Gestein und erzeugen gleichzeitig einen Pfad, auf dem die Gase entweichen können. Wenn sich die Blasen schneller ausdehnen als die Gase entweichen können, kommt es zu einem Vulkanausbruch. Dehnt sich das Gas langsamer aus, findet es einen günstigeren Pfad, über den es aus den Blasen entweichen kann, so dass sich die Gefahr eines Vulkanausbruchs verringert.
Blick ins Innere des flüssigen Vulkangesteins

Die Entstehung und Evolution von Blasen in geschmolzenem Basaltgestein (wie es um die Vulkane Stromboli und Ätna in Italien) standen im Mittelpunkt eines Projekts, das ein international zusammengesetztes Forschungsteam unter der Leitung von Don Baker von der McGill University (Kanada) durchgeführt hat. Die Experimente haben die Forschenden am Tomografie-Messplatz TOMCAT an der Synchrotron Lichtquelle Schweiz des Paul Scherrer Instituts durchgeführt. „Mit einem neuartigen lasergestützten Heizsystem und der Ausrüstung für die Darstellung schneller Prozesse am Messplatz TOMCAT haben wir die Veränderungen der Mikrostruktur des Materials in drei Dimensionen und in Echtzeit verfolgen können. Damit haben wir den Beginn der Blasenbildung im Innern eines kleinen Stücks Basaltschmelze Sekunde für Sekunde verfolgen können.“ erklärt Julie Fife, Wissenschaftlerin am TOMCAT-Messplatz. Die Forschenden konnten damit bestimmen, welchen Bedingungen für die Blasenbildung zu einem Ausbruch führen.
„Das komplexe Wechselspiel zwischen der Festigkeit des geschmolzenem Gesteins und seiner zunehmenden Gasdurchlässigkeit am Anfang der Blasenbildung deutet darauf hin, dass die Kombination dieser beiden Grössen darüber entscheidet, ob ein Vulkan heftig ausbricht oder ob die enthaltenen Gase still entweichen und höchstens kleinere Ausbrüche erzeugen“, erklärt Don Baker die Ergebnisse.

Die ersten Sekunden entscheiden über den Vulkanausbruch

Das wohl wichtigste Resultat dieser Untersuchungen deutet darauf hin, dass eine der heftigsten Eruptionsarten, die so genannte Plinianische Eruption, in den ersten zehn Sekunden der Blasenformung ausgelöst wird. Die rasche Zunahme der Zahl der Blasen führt dazu, dass das Gestein geschwächt wird und führt schliesslich zu einem Zusammenbruch der untersuchten Probe. Wenn das Magma nicht unmittelbar ausbricht, können ausreichende Pfade entstehen, über die das Gas entweichen kann, so dass sich das Risiko eines Ausbruchs reduziert. Diese Untersuchungen sind ein kleiner, aber wesentlicher Schritt zu dem Ziel, zukünftig weltweit die Typen von Vulkanausbrüchen voraussagen zu können.
Text: Julie L. Fife und Don Baker


Über das PSI
Das Paul Scherrer Institut entwickelt, baut und betreibt grosse und komplexe Forschungsanlagen und stellt sie der nationalen und internationalen Forschungsgemeinde zur Verfügung. Eigene Forschungsschwerpunkte sind Materie und Material, Mensch und Gesundheit, sowie Energie und Umwelt. Mit 1500 Mitarbeitenden und einem Jahresbudget von rund 300 Mio. CHF ist es das grösste Forschungsinstitut der Schweiz.

Kontakt:
Don R. Baker, Earth and Planetary Sciences
McGill University, Montreal QC, H3A2A7, Kanada
Telefon: +1 514 398 7485; E-Mail: don.baker@mcgill.ca

Julie L. Fife, Synchrotron Lichtquelle Schweiz
Paul Scherrer Institut, 5232 Villigen PSI, Schweiz,
Phone: +41 (0)56 310 58 40; E-Mail: julie.fife@psi.ch
Originalveröffentlichung:
A 4D x-ray tomographic microscopy study of bubble growth in basaltic foam
Don R. Baker, Francesco Brun, Cedrick O'Shaughnessy, Lucia Mancini, Julie L. Fife, Mark Rivers

Nature Communication, 16 October 2012, DOI: http://dx.doi.org/10.1038/ncomms2134

Dagmar Baroke | idw
Weitere Informationen:
http://www.psi.ch/sls/tomcat/tomcat

Weitere Berichte zu: Blasen Blasenbildung Eruption Lichtquelle PSI Röntgenlicht Synchrotron Vulkan Vulkanausbruch

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Unterschiedliche Erwärmung von Arktis und Antarktis: Forscher sieht Höhenunterschied als Ursache
18.05.2017 | Universität Leipzig

nachricht Wie wirkt sich der Klimawandel auf die Bewohner der Arktis aus?
18.05.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium 2017: Internet of Production für agile Unternehmen

23.05.2017 | Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen

23.05.2017 | Biowissenschaften Chemie

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungsnachrichten

CAST-Projekt setzt Dunkler Materie neue Grenzen

23.05.2017 | Physik Astronomie