Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Rodderberg-Vulkan bei Bonn verdient eine Tiefbohrung

20.10.2009
Vulkanismus und Klimageschichte des Rheinlandes werden untersucht.

Forschungsmittel für eine 150 m tiefe Bohrung im Krater des Rodderberg-Vulkans wurden einem Geowissenschaftler-Team zugesprochen, das sich am 23.10.2009 zu einem Planungsworkshop im Bonner Steinmann-Institut zusammenfindet.

Ziel der Bohrung ist es, einen Beitrag zu Vulkanismus und Klimageschichte des Rheinlands und zu geophysikalischen und hydraulischen Parametern von Löss und seinen Derivaten zu liefern. Bohrkerne in hoher Qualität sollen gewonnen werden.

Das Steinmann-Institut der Universität Bonn hat zusammen mit dem Geologischen Dienst NRW, Krefeld, und dem Leibniz-Institut für Angewandte Geophysik, Hannover, Forschungsmittel für eine ungefähr 150 m tiefe Bohrung im Explosionstrichter des Rodderberg-Vulkans für das Jahr 2011 zugesprochen bekommen. Wissenschaftler der drei Institutionen hatten gemeinsam mit Kollegen der Universitäten Bayreuth, Braunschweig, Bremen und Köln einen Förderantrag für dieses Forschungsvorhaben gestellt und sich gegen mehrere Konkurrenzvorschläge durchsetzen können.

Zum Wochenende (23. und 24.10.09) treffen sich die beteiligten Wissenschaftler zu einem Workshop im Bonner Steinmann-Institut, um die Arbeitsabläufe für dieses Forschungsprojekt abzustimmen. Als Schwerpunkte dieser Zusammenkunft sollen die komplexen Erfordernisse der verschiedenen Wissenschaftsdisziplinen zur Sprache kommen. Die bohrtechnischen Anforderungen und die bereits vorliegenden Untersuchungsergebnisse werden vorgetragen. Bis zum Bohrbeginn 2011 sind für die Bohrungsplanung einige wichtige Randbedingungen zu berücksichtigen: Naturschutz, Eigentümer- und Pächterinteressen, Erholungs- und Informationsbedürfnisse im beliebten Bonner Naherholungsgebiet.

Der Rodderberg am Stadtrand von Bonn hat es in sich: Er besteht aus vulkanischem Gestein und erhebt sich über ein kreisrundes Tal. Für Geologen ist dieses Tal, es hat 800 m Durchmesser, ein wieder zugeschütteter Vulkankrater, vieldiskutiert seit den frühen Tagen der Gewissenschaften. Der Krater wurde schon von Charles Lyell (1834) in seinem berühmten Werk "Principles of Geology" in einem Atemzug mit dem Vesuv erwähnt. Dennoch, bis heute blieb Vieles rätselhaft. Wann, wie und wieso brach der Vulkan aus, wie tief ist der Krater, was sagt uns seine mächtige Lössfüllung? Einige Messungen deuten auf ein Vulkan-Alter um 300.000 Jahre hin, mehrere Ausbruchsphasen sind bewiesen. Früheren Bohrungen ist es nicht gelungen, den "Boden" der Kraterfüllung zu erreichen, der möglicherweise erst bei über 100 m Tiefe liegt. Also ein wirklich tiefes Loch, das mit der Zeit von Sedimenten aufgefüllt wurde, die heute ein wertvolles Archiv der Klima- und Umweltbedingungen bilden.

Löss, Klimageschichte und Vulkanismus des Rheinlandes, so heißen stark vereinfacht die Hauptziele der Geowissenschaftler. Ein wenig detaillierter klingt dies so:

1. Geophysikalische und hydraulische Parameter von Löss und seinen Derivaten. Löss ist ein weltweit verbreitetes, oberflächennah und patchwork-artig auftretendes Sediment. Der Kenntnisstand seiner petrographischen, geochemischen, geophysikalischen und hydraulischen Eigenschaften soll erweitert werden. Neue geeignete Untersuchungsmethoden sollen entwickelt und erprobt werden. Vertiefte Kenntnisse über Löss sind besonders für Bewertungen zur Grundwasserneubildung und -qualität wertvoll. Weite Teile Europas tragen

eine Lössbedeckung. Auch allgemeine Baugrund-Fragestellungen werden von neuen Messverfahren und von den erwarteten Ergebnissen profitieren.

2. Erschließung und Datierung eines umfangreichen Klima- und Stratigraphie-Archivs zur weiteren Komplettierung der in Mitteleuropa immer noch problematischen Nord-Süd-Korrelation quartärer terrestrischer Sedimentarchive. Dies ist notwendig, um die jüngere Klimageschichte angemessen zu interpretieren. Die erwartenden Daten sind auch als Bausteine für die Einschätzung von Klimaprognosen wichtig.

3. Vulkankomplex Rodderberg - seine geologische Position, Ausbruchs- und Verfüllungsgeschichte, sein Bezug zum Eifelvulkanismus und seine Bedeutung zur Rekonstruktion der jungen Hebungsgeschichte des Rheinischen Schiefergebirges.

Die Bohrung soll 2011 begonnen werden, die Bohrarbeiten werden von einem fahrbaren Bohrgerät (LKW) aus durchgeführt und dauern ca. 3 bis 5 Wochen. Es wird eine PVC-Verrohrung (Ø 12,5 cm) ins Bohrloch eingebaut, damit über eine längere Zeitspanne wissenschaftliche Experimente, Messungen und Langzeitbeobachtungen durchgeführt werden können. Oberirdisch wird nach Abschluss der Bohrarbeit nur ein Kanaldeckel zu sehen sein. Nach etwa 5 Jahren wird die Bohrung vollständig zurückgebaut. Das Bohrloch wird verfüllt. Alle Maßnahmen im Zusammenhang mit dieser Forschungsbohrung erfolgen rücksichtsvoll und in frühzeitiger und enger Absprache mit Naturschutzbehörden und Interessenträgern. Die interessierte Öffentlichkeit wird kontinuierlich über Arbeitsfortschritte und Zwischenergebnisse unterrichtet.

Kontakt - Projektkoordination:

Leibniz-Institut für Angewandte Geophysik, Hannover
Herr Dipl.-Geol. Franz Binot
Tel.: 0511 / 643-3497 oder - 2302
franz.binot@liag-hannover.de
Geologischer Dienst Nordrhein-Westfalen, Krefeld
Herr Dipl.-Geol. Dr. Georg Schollmayer
Tel.: 02151 / 897-485
georg.schollmayer@gd.nrw.de
Steinmann-Institut der Universität Bonn
Herr Prof. Dr. Nikolaus Froitzheim
Tel.: 0228 / 73 24 63
nfroitzh@uni-bonn.de

Franz Binot | idw
Weitere Informationen:
http://www.liag-hannover.de
http://www.steinmann.uni-bonn.de
http://www.gd.nrw.de

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Stagnation im tiefen Südpazifik erklärt natürliche CO2-Schwankungen
23.02.2018 | Carl von Ossietzky-Universität Oldenburg

nachricht Birgt Mikroplastik zusätzliche Gefahren durch Besiedlung mit schädlichen Bakterien?
21.02.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics