Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Warum Riesendinosaurier so groß wurden

10.10.2008
Sauropoden waren mit einer Körperlänge von fast 40 Metern, einer Höhe von 17 Metern und einem Gewicht von bis zu 100 Tonnen die größten Landtiere, die je die Erde bewohnten.

Ihr einzigartiger Gigantismus war möglich, weil sie Eier legten und viele Nachkommen hatten, die Nahrung nur herunter schlangen anstatt sie zu kauen, eine vogelähnliche Lunge aufwiesen und eine flexible Stoffwechselrate hatten. Dies berichtet Professor Dr. Martin Sander von der Universität Bonn gemeinsam mit seinem Züricher Kollegen Dr. Marcus Clauss in der neusten Ausgabe von "Science".

Dinosaurier werden in der Regel als eine Sackgasse der Evolution betrachtet. Ihr noch immer nicht vollends erklärtes Aussterben verleitet gerne zu der Ansicht, sie seien keine wirklich erfolgreiche Wirbeltier-Gruppe gewesen. Doch die pflanzenfressenden Sauropoden - als größte Landtiere aller Zeiten - bildeten nicht nur 120 verschiedene Gattungen aus, sondern dominierten auch die terrestrischen Ökosysteme ihrer Zeit über 100 Millionen Jahre lang - länger als alle anderen Lebewesen. Wenn pflanzenfressende Säugetiere jemals gleich erfolgreich sein wollen, müssen sie ihre gegenwärtige Überlebenszeit auf der Erde noch einmal verdoppeln.

Schlucken statt kauen

Der Bonner Paläontologe Professor Dr. Martin Sander und Privatdozent Dr. Marcus Clauss beschreiben in der Ausgabe vom 10. Oktober 2008 von "Science", warum die Sauropoden so groß werden konnten. Im Gegensatz zu Säugetieren wiesen die Sauropoden die evolutionsgeschichtlich "altmodische" Eigenschaft auf, dass sie ihr Futter nicht kauten. Sie hatten keine Zähne, die den Kopf mit steigendem Körpergewicht überproportional größer machen. Es gab also keine Beschränkung durch übergroße Köpfe, und somit wurden auch die sehr langen Hälsen möglich - eine Form, die bei Säugetieren komplett fehlt. Die Hälse der Giraffe oder des Kamels sind im Vergleich zu den Sauropoden-Hälsen extrem kurz. Sauropoden schlossen die Nahrung also nicht durch Kauen auf, sondern erledigten die Verdauung schlicht durch eine lange Verweildauer der Nahrung in ihren riesigen Därmen.

Sauropoden hatten noch eine andere "altmodische" Eigenschaft - sie legten Eier. Die für die Fortpflanzung benötigte Energie wurde nicht in ein einziges, gut gehütetes Jungtier gesteckt, sondern in zahlreichen Nachkommen. Wenn eine Naturkatastrophe die Population deutlich reduzierte, konnten so wenige Elterntiere rasch Nachkommen produzieren, so dass sich die Population schnell erholen konnte. "Dies ist ein wichtiger Grund für den langen, bisher ungebrochenen Überlebensrekord des Modells Dinosaurier", erklärt Marcus Clauss.

Vogelartige Lungen

Eine Eigenschaft der Sauropoden und einiger anderer Dinosaurier war jedoch hoch entwickelt und findet ein Äquivalent in Tierreich wohl nur bei Vögeln - ihre vogelartigen Lungen. Das Lungensystem von Vögeln ist durch verschiedenste große Luftsäcke in ihrem Körper gekennzeichnet, die auch in die Knochen hineinreichen und diese dadurch leicht machen. Sauropoden-Knochen, vor allem in den Halswirbeln, wurden zahlreiche Hinweise auf eine solche "Pneumatisierung" gefunden. Diese hocheffektiven Lungen könnten einerseits eine hohe Stoffwechselrate insbesondere bei jungen Tieren ermöglicht haben. Andererseits hätten die Luftsäcke und Knochen-Pneumatisierung den riesigen Hals leicht gemacht und zugleich die innere Oberfläche der Tiere vergrößert, so dass durch die Atmung mehr Wärme an die Umgebung hätte abgegeben werden können.

Eine letzte, vermeintlich hoch entwickelter Eigenschaft wird für die Sauropoden diskutiert - nämlich eine Stoffwechselrate, die sich im Laufe der Entwicklung vom Jungtier zum erwachsenen Stadium deutlich verändert. Ein Äquivalent dazu ist im heutigen Tierreich nicht bekannt. Diese Eigenschaft kann nicht anhand von fossilen Kunden belegt werden, sondern ergibt sich aus einem logischen Dilemma: die Wachstumsraten der Sauropoden waren enorm und denen von Säugetieren vergleichbar - das weiß man aus Untersuchungen von Wachstumszonen am Knochen. Ein 10 Kilogramm schwerer Schlüpfling erreichte ein Körpergewicht von bis zu 30 Tonnen innerhalb von ca. 20 Jahren. Ein solches Wachstum ist ohne einen eine säugetierähnliche Stoffwechselrate nicht denkbar. Berechnungen zeigen jedoch, dass ein ausgewachsener Sauropode selbst mit der vergrößerten inneren Oberfläche mit einem Säugetier-Stoffwechsel überhitzen würde. "Die einfachste Erklärung wäre, dass bei diesen Tieren die Stoffwechselrate mit zunehmender Körpergröße absinkt", sagt der Bonner Paläontologe Martin Sander.

Der Gigantismus der Sauropoden lässt sich somit aus einer Kombination von evolutiongeschichtlich alten Eigenschaften (Fortpflanzung mittels Eiern, keine Zerkleinerung der Nahrung) und hochmoderne Anpassungen (vogelartige Lunge, flexibele Stoffwechselrate) erklären. Säugetiere weisen eine andere Kombination von modernen Anpassungen auf (Fortpflanzung mit Lebendgeburt, hochgradige Zerkleinerung der Nahrung mittels Zähnen, hohe Stoffwechselrate), die höchstwahrscheinlich die maximal mögliche Körpermasse einschränken.

Seit 2004 fördert die Deutsche Forschungsgemeinschaft (DFG) an der Universität Bonn eine Forschergruppe, die der Frage nachgeht, warum die vor über 65 Millionen Jahren ausgestorbenen sauropoden Dinosaurier so gigantische Ausmaße annehmen konnten und wie ihre Körper funktionierten. Die Gruppe vereint Forscher aus Paläontologie, Zoologie und Biomechanik von insgesamt acht Universitäten in Deutschland und der Schweiz.

Kontakte:

Professor Dr. Martin Sander
Bereich für Paläontologie des Steinmann-Instituts der Universität Bonn
Telefon: ++49 (0) 228/73-3105
E-Mail: martin.sander@uni-bonn.de
Marcus Clauss
Klinik für Zoo-, Heim- und Wildtiere, Vetsuisse-Fakultät, Universität Zürich
Telefon: ++41 (0) 44 635 83 76
E-Mail: mclauss@vetclinics.uzh.ch

Dr. Andreas Archut | idw
Weitere Informationen:
http://www.sauropod-dinosaurs.uni-bonn.de

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Der Salzwasser-Wächter auf der Darßer Schwelle
19.09.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie