Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Riesen-Eisberge auf Grund gelaufen

05.08.2014

Fund der bisher tiefsten Eisbergkratzer liefert neue Erkenntnisse über die eiszeitliche Vergangenheit der Arktis

Wissenschaftler des Alfred-Wegener-Institutes, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI), haben auf dem Meeresboden zwischen Grönland und Spitzbergen Kratzspuren gigantischer Eisberge entdeckt.


Bathymetrische Darstellung der Kratzspuren auf dem Hovgaard Rücken

Diese Karten geben einen Überblick, wo die fünf Eisbergkratzer gefunden worden. Abbildung (a) zeigt eine bathymetrische Karte der Framstraße, basierend auf der International Bathymetric Chart of the Arctic Ocean (IBCAO) 3.0 [Jakobsson et al., 2012]. Abbildung (b) ist ein Blick auf den Hovgaard Rücken, dargestellt mithilfe der bathymetrischen Daten, die während der Polarstern-Expedition ARK-VII/3a gesammelt wurden. Die Eisbergkratzer werden hier durch die schwarz-gestrichelten Linien angedeutet. Abbildung (c) zeigt den Hovgaard Rücken und die Kratzer in dreidimensionaler Darstellung. Quelle: Alfred-Wegener-Institut


Polarsterns Fächersonarsystem

Polarsterns Fächersonarsystem (Infografik: Alfred-Wegener-Institut)

Die fünf Furchen in einer Tiefe von 1200 Metern sind die tiefsten Eisbergkratzer, die bisher auf dem arktischen Meeresboden gefunden wurden. Der Fund liefert neue Hinweise zur eiszeitlichen Dynamik und Ausprägung des arktischen Eisschildes vor Tausenden Jahren. Außerdem konnten die Forscher Rückschlüsse auf den Süßwasserexport aus der Arktis in den Nordatlantik ziehen.

Ihre Ergebnisse haben die AWI-Wissenschaftler im Online-Portal des Fachmagazins Geophysical Research Letters veröffentlicht.

„Wenn Eisberge auf Grund laufen, hinterlassen sie auf dem Meeresboden Furchen, die je nach Ausdehnung und Lage über lange Zeiträume bestehen bleiben können“, erklärt Jan Erik Arndt, AWI-Bathymetriker und Erstautor des Papers.

Genau solche Spuren hat er gemeinsam mit drei AWI-Kollegen auf dem Hovgaard Rücken entdeckt. Der Hovgaard Rücken ist ein Plateau in der arktischen Tiefsee, gut 400 Kilometer vor Grönlands Ostküste gelegen. In einer Tiefe von 1200 Metern erstrecken sich hier die tiefsten Kratzspuren von Eisbergen, die bisher in der Arktis gefunden wurden. Die Furchen sind bis zu vier Kilometer lang und 15 Meter tief. „Solche Spuren erlauben uns einen Blick in die Vergangenheit. Dank dieser Eisbergkratzer wissen wir jetzt, dass über den Hovgaard Rücken früher einige sehr große und auch viele kleinere Eisberge getrieben sind“, sagt der Wissenschaftler.

Die Entdeckung der Kratzer am Hovgaard Rücken war ein Glücksfall und keineswegs das Ergebnis einer gezielten Suchaktion. Jan Erik Arndt und seine Kollegen stießen in bathymetrischen Daten aus dem Jahr 1990 auf die Kratzer. Die Daten hatte das Forschungsschiff Polarstern für eine Kartierung der Framstraße gesammelt. „Als wir uns die Daten aufs Neue detailliert angeschaut haben, sind uns die Furchen aufgefallen. Im Hinblick auf die Tiefe war uns dann schnell klar, dass wir da etwas Interessantes gefunden hatten“, sagt Jan Erik Arndt.

Die Wissenschaftler arbeiten heute mit besserer Computer-Hard- und Software als noch in den 1990er Jahren. Die neue Technik erlaubt einen genaueren Blick auf die alten Daten. Deshalb tauchten die Furchen erst jetzt, 24 Jahre nach dem Sammeln der Daten, auf den Monitoren der Wissenschaftler auf. 

Wann die Eisberge über den Hovgaard Rücken geschrappt sind, können die Wissenschaftler allerdings nur grob eingrenzen: Klar ist, dass es in den vergangenen 800 000 Jahren passiert sein muss. Weil der Meeresspiegel in den Eiszeiten gut 120 Meter tiefer lag als heute, reichten die Eisberge demnach mindestens 1080 Meter unter die Wasseroberfläche.

Da Eisberge in der Regel zu etwa einem Zehntel aus dem Wasser herausragen, schätzen die AWI-Wissenschaftler die Größe des Eisberges auf grob 1200 Meter – das ist drei Mal höher als der Berliner Fernsehturm. „Um solche Riesen-Eisberge zu produzieren, war der Eisschildrand im Arktischen Ozean somit stellenweise mindestens 1200 Meter dick“, so Jan Erik Arndt.

Heute suchen Wissenschaftler vergeblich nach solchen Mega-Eisbergen. „Die größten Eisberge finden wir derzeit in der Antarktis. Sie reichen allerdings maximal noch bis zu 700 Meter unter die Wasseroberfläche“, erklärt der Bathymetriker. Ein Rätsel bleibt zudem die Geburtsstätte der Riesen-Eisberge, welche die Kratzer am Hovgaard Rücken hinterlassen haben. Die AWI-Wissenschaftler halten zwei Gebiete vor der Nordküste Russlands für die wahrscheinlichsten Orte.

Die Forscher interessieren sich allerdings nicht nur wegen der Eisberggröße für die Kratzer: Die Spuren befeuern eine alte Fachdiskussion um die Frage, auf welche Weise in der Vergangenheit Süßwasser aus der Arktis in den Atlantischen Ozean transportiert wurde. Bisher nahmen einige Wissenschaftler an, dass vor allem dickes Meereis für die Süßwasserausfuhr aus der Arktis verantwortlich war. Die neu entdeckten Kratzspuren allerdings untermauern eine andere Hypothese. Demnach waren große Eisberge von Norden nach Süden durch die Framstraße getrieben und hatten große Mengen gefrorenes Süßwasser Richtung Süden in den Nordatlantik verfrachtet.

Zahlreiche Studien machen gerade die erhöhten Süßwassereinträge für ein Abstellen der nordatlantischen Tiefenwasserbildung am Ende der letzten Eiszeit verantwortlich. Als Folge versiegte der Golfstrom, was zu einer drastischen Abkühlung in Europa führte. Da die Strömung im Atlantik ein wichtiger Motor für den Antrieb des weltumspannenden Zirkulationssystems ist, waren die Auswirkungen global spürbar. „Dass Eisberge in dieser Größenordnung aus der Arktis getrieben sind, spricht eindeutig dafür, dass Eisberge eine gravierendere Rolle für die Süßwasserzufuhr hatten, als bisher angenommen“, so Jan Erik Arndt.

Hinweise für Redaktionen:
Der Fachartikel ist unter folgendem Titel in der Online-Ausgabe des Fachmagazins Geophysical Research Letters erschienen:
Jan Erik Arndt, Frank Niessen, Wilfried Jokat, Boris Dorschel: Deep water paleo-iceberg scouring on top of Hovgaard Ridge–Arctic Ocean, DOI: 10.1002/2014GL060267 (Link: http://onlinelibrary.wiley.com/doi/10.1002/2014GL060267/abstract)

Druckbare Bilder finden Sie auf unserer Homepage unter http://www.awi.de/de/aktuelles_und_presse/pressemitteilungen/.

Ihr wissenschaftlicher Ansprechpartner am Alfred-Wegener-Institut ist:
Jan Erik Arndt (Tel: 0471 4831-1369, E-Mail: Jan.Erik.Arndt(at)awi.de)

In der AWI-Pressestelle steht Ihnen Anne Kliem (Tel: 0471 4831-2006, E-Mail: medien(at)awi.de) für Rückfragen zur Verfügung.

Folgen Sie dem Alfred-Wegener-Institut auf Twitter (https://twitter.com/#!/AWI_de) und Facebook (http://www.facebook.com/AlfredWegenerInstitut) . So erhalten Sie alle aktuellen Nachrichten sowie Informationen zu kleinen Alltagsgeschichten aus dem Institutsleben.

Das Alfred-Wegener-Institut forscht in der Arktis, Antarktis und den Ozeanen der mittleren und hohen Breiten. Es koordiniert die Polarforschung in Deutschland und stellt wichtige Infrastruktur wie den Forschungseisbrecher Polarstern und Stationen in der Arktis und Antarktis für die internationale Wissenschaft zur Verfügung. Das Alfred-Wegener-Institut ist eines der 18 Forschungszentren der Helmholtz-Gemeinschaft, der größten Wissenschaftsorganisation Deutschlands.

Ralf Röchert | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.awi.de

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Seltener Weizenfund in bronzezeitlicher Lunch-Box aus dem Schweizer Hochgebirge
26.07.2017 | Max-Planck-Institut für Menschheitsgeschichte / Max Planck Institute for the Science of Human History

nachricht Grossmäuliger Fisch war nach Massenaussterben Spitzenräuber
26.07.2017 | Universität Zürich

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Blattkäfer: Schon winzige Pestizid-Dosis beeinträchtigt Fortpflanzung

26.07.2017 | Biowissenschaften Chemie

Akute myeloische Leukämie (AML): Neues Medikament steht kurz vor der Zulassung in Europa

26.07.2017 | Biowissenschaften Chemie

Biomarker zeigen Aggressivität des Tumors an

26.07.2017 | Biowissenschaften Chemie