Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Reibungswärme treibt hydrothermale Aktivität auf Enceladus an

23.11.2017

Computersimulation zeigt, wie der Eismond Wasser in einem porösen Gesteinskern aufheizt

Wärme aus der Reibung von Gestein, ausgelöst durch starke Gezeitenkräfte, könnte der „Motor“ für die hydrothermale Aktivität auf dem Saturnmond Enceladus sein. Voraussetzung dafür ist, dass der Mond einen porösen Kern hat, sodass Wasser des darüberliegenden globalen Ozeans in den Kern eindringen kann und dort durch die Reibungswärme erhitzt wird.


Oberfläche, Ozean und Kern des Saturnmondes Enceladus. Eine Computersimulation zeigt, wie der Eismond Wasser in einem porösen Gesteinskern aufheizt.

Quelle: Oberfläche – NASA/JPL-Caltech/Space Science Institute; Kern – Choblet et al (2017); Komposition der Grafik – ESA

Das zeigt eine Computersimulation, die im Rahmen der europäisch-amerikanischen Cassini-Huygens-Mission entstanden ist. Sie bietet auch eine Antwort auf die lange ungelöste Frage, woher die Energie stammt, die die Existenz von flüssigem Wasser auf dem kleinen, kryovulkanisch aktivem Mond fern der Sonne ermöglicht. An den Untersuchungen war auch die Forschungsgruppe von Privatdozent Dr. Frank Postberg, Planetologe an der Universität Heidelberg, beteiligt.

Bereits 2015 konnten die Wissenschaftler zeigen, dass es hydrothermale Aktivität auf dem Saturnmond geben muss. Aus Eisvulkanen schleudert Enceladus feinste Gesteinskörner in riesigen Fontänen aus Gas und Wassereis in den Weltraum. Diese Partikel konnten mit einem Detektor der Raumsonde Cassini erfasst werden.

Sie stammen vom Grund eines über 50.000 Meter tiefen Ozeans, der sich unter einer drei bis 35 Kilometer dicken Eiskruste von Enceladus erstreckt. Mit Computersimulationen und Laborexperimenten fanden die Wissenschaftler Hinweise darauf, dass es in der Tiefe zu einer Wechselwirkung zwischen Gestein und Wasser kommt – bei Temperaturen von mindestens 90 Grad Celsius.

Doch woher kommt die Energie für diese Hydrothermalsysteme, die den Transport von Materie antreiben? Und wie genau gelangen die Gesteinspartikel an die Oberfläche des Eismondes?

Die aktuellen Untersuchungen unter Federführung der Universität Nantes (Frankreich) bieten dafür eine Erklärung. Wie Dr. Postberg erläutert, ist der Gesteinskern von Enceladus vermutlich porös. Daher kann das Wasser des darüberliegenden Ozeans tief in den Kern eindringen. Gleichzeitig wirken starke Gezeitenkräfte, die der Saturn auf seinen Mond ausübt, auf das „lose“ Gestein des Kerns ein.

Die neue Computersimulation zeigt, dass dadurch Reibungswärme sehr effizient auf das durch den Kern spülende Wasser übertragen und dieses auf über 90 Grad Celsius erwärmt wird. Einige Bestandteile des Gesteinskerns werden dabei im so erhitzten Wasser gelöst. Die hydrothermalen Fluide strömen an bestimmten Punkten – den Hotspots – wieder in den Ozean. Durch die Abkühlung fallen Teile des gelösten Materials als feine Partikel aus und werden mit dem warmen Wasser an die Ozeanoberfläche transportiert. Die Hotspots liegen bevorzugt an den Polen von Enceladus.

Die aufsteigenden hydrothermalen Fluide lösen vermutlich lokale Schmelzvorgänge in der Eisschicht der Polregion aus. Dies erklärt nach den Worten von Dr. Postberg, warum die Eisschicht an den Polen mit drei bis zehn Kilometern deutlich dünner ist als am Äquator, wo sie 35 Kilometer dick ist. „Am Südpol kann das Wasser durch Spalten sogar bis nahe an die Mondoberfläche aufsteigen. Dort werden die mikroskopisch kleinen Gesteinskörner aus dem Kern zusammen mit Eispartikeln ins All geschleudert, wo sie dann von den Instrumenten der Raumsonde Cassini erfasst werden konnten“, so der Heidelberger Planetologe.

Die Untersuchung zeigt auch, dass nur mit dieser Wärmequelle im Kern der darüberliegende flüssige Ozean aufrecht gehalten werden kann. Sonst würde er in weniger als 30 Millionen Jahren komplett ausfrieren. Dr. Postberg forscht am Klaus-Tschira-Labor für Kosmochemie, das am Institut für Geowissenschaften der Universität Heidelberg angesiedelt ist und von der Klaus Tschira Stiftung gefördert wird.

Die Cassini-Huygens-Mission wurde 1997 als gemeinsames Projekt der NASA und der ESA sowie der italienischen Raumfahrtagentur ASI mit dem Ziel gestartet, neue Erkenntnisse über den Gasplaneten Saturn und seine Monde zu gewinnen. Von 2004 an umkreiste die Raumsonde Cassini den Saturn, bis die Mission im September dieses Jahres mit dem Eintritt der Sonde in die Saturnatmosphäre endete. Die jüngsten Forschungsergebnisse wurden in der Fachzeitschrift „Nature Astronomy“ veröffentlicht.

Originalpublikation:
G. Choblet, G. Tobie, C. Sotin, M. Běhounková, O. Čadek, F. Postberg & O. Souček: Powering prolonged hydrothermal activity inside Enceladus. Nature Astronomy (published online 6 November 2017), doi: 10.1038/s41550-017-0289-8

Kontakt:
Privatdozent Dr. Frank Postberg
Institut für Geowissenschaften
Klaus-Tschira-Labor für Kosmochemie
Tel. +49 6221 54-8209
frank.postberg@geow.uni-heidelberg.de

Kommunikation und Marketing
Pressestelle
Tel. +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Weitere Informationen:

http://www.geow.uni-heidelberg.de/researchgroups/postberg/

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Umrüstung auf LED-Beleuchtung spart Energie und Geld, führt aber zu steigender Lichtverschmutzung
23.11.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

nachricht Grundlagenforschung für die Praxis: Modelle der Geophysik auch für Materialwissenschaften nützlich
23.11.2017 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Reibungswärme treibt hydrothermale Aktivität auf Enceladus an

Computersimulation zeigt, wie der Eismond Wasser in einem porösen Gesteinskern aufheizt

Wärme aus der Reibung von Gestein, ausgelöst durch starke Gezeitenkräfte, könnte der „Motor“ für die hydrothermale Aktivität auf dem Saturnmond Enceladus sein....

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

IfBB bei 12th European Bioplastics Conference mit dabei: neue Marktzahlen, neue Forschungsthemen

22.11.2017 | Veranstaltungen

Zahnimplantate: Forschungsergebnisse und ihre Konsequenzen – 31. Kongress der DGI

22.11.2017 | Veranstaltungen

Tagung widmet sich dem Thema Autonomes Fahren

21.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Reibungswärme treibt hydrothermale Aktivität auf Enceladus an

23.11.2017 | Geowissenschaften

Leistungsfähigere und sicherere Batterien

23.11.2017 | Energie und Elektrotechnik

Ein MRT für Forscher im Maschinenbau

23.11.2017 | Maschinenbau