Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Warum es regnet: Wie Aerosole das Wetter beeinflussen

12.06.2009
Der Chemiker als Klimaforscher: Am Max-Planck-Institut für Chemie in Mainz befasst sich Professor Meinrat Andreae mit den Auswirkungen von Aerosolen.

Dass die winzigen Schmutzpartikelchen das Klima beeinflussen, weiß man bereits - unklar war bisher jedoch wie. Im Interview erklärt der Mainzer Wissenschaftler, warum es so knifflig ist, diese Frage zu beantworten.

Herr Professor Andrae, Sie befassen sich mit Auswirkungen von Aerosolen - den winzigen Schmutzpartikelchen, die von Autos, Kraftwerken und Heizungen in die Luft geblasen werden. Aerosole beeinflussen unser Klima - so viel ist schon klar - allerdings weiß man nicht genau wie. Wo liegt das Problem?

Andreae: Es hat vielleicht einfach damit zu tun, dass Aerosole aus vielen Komponenten bestehen. Da gibt es zum Beispiel schwarze Partikel, Rußpartikel, die sich ganz anders verhalten, als zum Beispiel farblose Partikel wie Sulfataerosole, Schwefelsäureteilchen, die aus der Verbrennung von fossilen Brennstoffen entstehen können. Das heißt: Aerosole können das Klima in vielfacher und zum Teil gegensätzlicher Weise beeinflussen. Die Aerosole fangen an, mit den Mechanismen, die den Niederschlag erzeugen - also all dem, was in den Wolken vor sich geht - zu wechselwirken, das heißt die Aerosole sind beteiligt bei der Bildung von Wolkentröpfchen, sie entscheiden mit darüber, ob aus Wolkentröpfchen Regentropfen werden.

Wie wollen Klimaforscher wie Sie damit eigentlich zu konkreten Vorhersagen kommen?

Andreae: Die einzige Weise, wie wir wirklich zu Vorhersagen kommen können, ist, dass wir diese ganzen komplexen und wechselwirkenden Prozesse verstehen lernen und dann das Verständnis dieser Wechselwirkungen in Klimamodelle, in Wolkenmodelle einbauen und daraus die Nettoauswirkungen zunehmender Aerosolbelastung abschätzen können.

Die Auswirkung von Aerosolen lässt sich also schwer berechnen - und dabei geht es nicht nur um den Unterschied, ob es nun schwarze oder farblose Partikelchen sind. Da spielen auch noch andere Eigenschaften eine größere Rolle - welche sind das?

Andreae: Die Aerosole sind wie gesagt nicht eine Art von Teilchen, sondern ein Gemisch von vielen Arten von Teilchen. Da gibt es zum Beispiel natürliche Aerosole wie den Wüstenstaub oder das Meersalzaerosol. Das sind oft große Teilchen, die wiederum ganz andere Wirkungen auf Wolken haben, als das, was wir hauptsächlich aus den Industrieemissionen erzeugen - also eher kleine Teilchen, die aber am Wesentlichsten beteiligt sind bei der Bildung von Wolkentröpfchen.

Diese kleinen Aerosolteilchen - etwa in der Größenordnung von 0,1 Mikrometer Durchmesser - sind die wichtigsten Teilchen bei der Bildung von Wolken. Die stellen die Wolkenkondensationskeime dar. Wenn wir einmal den Extremfall annehmen, wenn es eine Atmosphäre gäbe, die gar keine Aerosole enthielte, so könnte sich in dieser Atmosphäre niemals Regen bilden, weil Wasserdampf eigentlich nie aus der Gasphase kondensiert. Wenn es nun ganz wenige Aerosole gibt, dann muss der Wasserdampf, wenn er eine Wolke bildet, sich an diesen sehr wenigen Teilchen kondensieren - diese müssen deswegen auch relativ groß werden und fangen deswegen sehr schnell an, aus der Atmosphäre zu fallen, das heißt, es regnet sehr schnell und aus relativ wenigen großen Tropfen ab. Wenn wir nun eine Wolke, um beim anderen Extrem zu bleiben, mit sehr, sehr vielen Tropfen versorgen, dann müssen diese Tröpfchen, weil sie sich die Menge Wasser teilen müssen, sehr klein sein. Das Problem dabei ist, dass sich diese vielen kleinen Tröpfchen niemals zu dem relativ großen Regentropfen zusammenfinden können, der dann auch fällt. Diese Wolke kann nicht regnen. Und nun stellt es sich heraus, dass es gerade in dem Zwischenbereich, in dem mittleren Bereich zwischen sehr hohen und sehr niedrigen Konzentrationen, einen optimalen Bereich gibt, aus dem die Wolke das Maximum an Niederschlag und auch das Maximum an Energie beim Aufstieg der Wolke herausholen kann.

Aerosole können auch ohne Wolken das Klima beeinflussen - was passiert denn da?

Andreae: Wenn Aerosole sich in der Atmosphäre befinden, dann haben sie zunächst einmal einen ganz einfachen Effekt, der auch ohne Wolken passiert, nämlich, dass sie Licht, das von der Sonne auf die Erde einstrahlt, wieder in den Weltraum zurückstreuen, das heißt, es kommt weniger Energie an der Erdoberfläche an. Wenn weniger Energie an der Erdoberfläche ankommt, dann steht auch weniger Energie dazu zur Verfügung, Luft mit Auftrieb zu versorgen - also Wolken zu erzeugen. Die Existenz von Aerosolen in der Atmosphäre hat also einen Sonnenschirmeffekt, der die Bildung von Wolken verzögern oder verringern kann.

Zu diesem kommt nun der Effekt, dass, wenn eine Wolke zu viele Tröpfchen hat, also zu viele Aerosolteilchen da sind, die zur Bildung sehr vieler kleiner Tröpfchen führen, dass diese Wolke es auch schwer hat, Wolkentröpfchen zur Kollision miteinander zu bringen, die dann zur Bildung der relativ großen Regentropfen führt.

Ihr Institut hat sich mit dem Max-Planck-Institut für Meteorologie in Hamburg und dem Max-Planck-Institut für Biogeochemie in Jena sowie dem Potsdam-Institut für Klimafolgenforschung zur Partnerschaft Erdsystemforschung zusammengeschlossen. Alle diese Institute sind auch mit einem gemeinsamen Beitrag im Wissenschaftszug "Expedition Zukunft" vertreten. Warum gibt es diese Partnerschaft?

Andreae: Das Erdsystem ist zu groß, um an einem Institut alles erforschen zu können. Es geht beim Erdsystem um das Wechselwirken der menschlichen Komponente des Systems mit den natürlichen Komponenten - also den Vegetationen auf den Kontinenten, der Zirkulation der Vegetation in den Ozeanen, dem Eis auf der Erde - sowohl in Antarctica, in Grönland und den Gletschern. Es geht auch um die Atmosphäre, in der sich sowohl das, was wir als Klima bezeichnen, also die wetterbezogenen als auch viele chemische Prozesse abspielen. Alle diese Zusammenhänge sind viel zu groß und viel zu komplex, um sie mit den Mitteln eines Max-Planck-Instituts erforschen zu können.

Herzlichen Dank für das Interview!

Das Gespräch führte Birgit Fenzel

Weitere Informationen erhalten Sie von:

Prof. Meinrat Andreae
Max-Planck-Institut für Chemie, Mainz
Tel.: +49 6131 305 - 420
Fax: +49 6131 305 - 487
E-Mail: biogeo@mpch-mainz.mpg.de

Barbara Abrell | idw
Weitere Informationen:
http://www.mpg.de
http://www.mpg.de/podcasts/scienceExpress/index.html

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Satelliten erfassen Photosynthese mit hoher Auflösung
13.10.2017 | Max-Planck-Institut für Biogeochemie

nachricht Erforschung des grönländischen 79°-Nord-Gletschers
12.10.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Topologische Isolatoren: Neuer Phasenübergang entdeckt

Physiker des HZB haben an BESSY II Materialien untersucht, die zu den topologischen Isolatoren gehören. Dabei entdeckten sie einen neuen Phasenübergang zwischen zwei unterschiedlichen topologischen Phasen. Eine dieser Phasen ist ferroelektrisch: das bedeutet, dass sich im Material spontan eine elektrische Polarisation ausbildet, die sich durch ein äußeres elektrisches Feld umschalten lässt. Dieses Ergebnis könnte neue Anwendungen wie das Schalten zwischen unterschiedlichen Leitfähigkeiten ermöglichen.

Topologische Isolatoren zeichnen sich dadurch aus, dass sie an ihren Oberflächen Strom sehr gut leiten, während sie im Innern Isolatoren sind. Zu dieser neuen...

Im Focus: Smarte Sensoren für effiziente Prozesse

Materialfehler im Endprodukt können in vielen Industriebereichen zu frühzeitigem Versagen führen und den sicheren Gebrauch der Erzeugnisse massiv beeinträchtigen. Eine Schlüsselrolle im Rahmen der Qualitätssicherung kommt daher intelligenten, zerstörungsfreien Sensorsystemen zu, die es erlauben, Bauteile schnell und kostengünstig zu prüfen, ohne das Material selbst zu beschädigen oder die Oberfläche zu verändern. Experten des Fraunhofer IZFP in Saarbrücken präsentieren vom 7. bis 10. November 2017 auf der Blechexpo in Stuttgart zwei Exponate, die eine schnelle, zuverlässige und automatisierte Materialcharakterisierung und Fehlerbestimmung ermöglichen (Halle 5, Stand 5306).

Bei Verwendung zeitaufwändiger zerstörender Prüfverfahren zieht die Qualitätsprüfung durch die Beschädigung oder Zerstörung der Produkte enorme Kosten nach...

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2017

17.10.2017 | Veranstaltungen

Intelligente Messmethoden für die Bauwerkssicherheit: Fachtagung „Messen im Bauwesen“ am 14.11.2017

17.10.2017 | Veranstaltungen

Meeresbiologe Mark E. Hay zu Gast bei den "Noblen Gesprächen" am Beutenberg Campus in Jena

16.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mikroben hinterlassen "Fingerabdrücke" auf Mars-Gestein

17.10.2017 | Biowissenschaften Chemie

Vorhersagen bestätigt: Schwere Elemente bei Neutronensternverschmelzungen nachgewiesen

17.10.2017 | Physik Astronomie

Kaiserschnitt-Risiko ist vererbbar

17.10.2017 | Biowissenschaften Chemie