Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Reduktion von klimaschädlichem Lachgas bisher unterschätzt

13.06.2013
Böden können reaktiven Stickstoff effektiv in unschädlicher Form an die Atmosphäre zurückführen. Zu diesem Schluss kommt ein Statusbericht zur Produktion von Lachgas, an dem Forscher des KIT-Instituts für Meteorologie und Klimaforschung führend mitgewirkt haben.

Wie die Wissenschaftler in der Zeitschrift „Philosophical Transactions of the Royal Society B: Biological Sciences“ darlegen, besitzt die Reduktion von klimaschädlichem Distickstoffoxid zu unbedenklichem molekularem Distickstoff eine wesentlich wichtigere Bedeutung als bisher angenommen. Diese Erkenntnis weist einen Weg zur künftigen Minderung von Lachgasemissionen.


Messroboter: Das vom KIT betriebene Gerät misst Lachgasemissionen aus dem Boden vollautomatisch.
(Foto: Dr. Eugenio Díaz-Pines)

Lachgas (Distickstoffoxid, N2O) trägt als Treibhausgas zum Klimawandel bei und schädigt die Ozonschicht: So ist die Treibhauswirkung von einer bestimmten Menge Distickstoffoxid in der Atmosphäre rund 300-mal stärker als die der gleichen Menge Kohlenstoffdioxid (CO2). Seit der Verbannung von Fluorchlorkohlenwasserstoffen (FCKW) zerstört N2O zudem die stratosphärische Ozonschicht stärker als jeder andere Stoff.

Die Menschheit hat seit Beginn der Industrialisierung vor allem durch Herstellung und Verwendung von Mineraldünger den globalen Kreislauf von reaktivem Stickstoff mehr als verdoppelt. Dies hat nicht nur zu einer schleichenden Anreicherung von Nährstoffen in Ökosystemen geführt, was unter anderem die Biodiversität erheblich verringert, sondern auch zu einer Intensivierung von Stickstoffumsetzungen in Böden und Gewässern.

Durch den somit verstärkten Abbau von Nitrat durch spezielle Mikroorganismen – die sogenannte mikrobielle Denitrifikation – wird vermehrt Lachgas im Boden gebildet und in die Atmosphäre emittiert. So ist die Konzentration von N2O in der Atmosphäre im Vergleich zu vorindustrieller Zeit um etwa 20 Prozent angestiegen. Denitrifikation produziert jedoch nicht nur N2O, sondern kann dieses auch zu molekularem Distickstoff (N2) reduzieren. „Somit entspricht die aus Böden an die Atmosphäre entweichende Lachgasmenge der Bilanz aus N2O-Produktion und der Reduktion zu N2. Molekularer Distickstoff ist unter Umweltaspekten völlig unbedenklich“, erläutert Dr. Michael Dannemann vom Institut für Meteorologie und Klimaforschung – Atmosphärische Umweltforschung (IMK-IFU) des KIT.

Ein Team von Wissenschaftlern um die KIT-Klimaforscher Professor Klaus Butterbach-Bahl, Dr. Ralf Kiese und Dr. Michael Dannenmann vom IMK-IFU hat nun auf Einladung der britischen Royal Society einen Statusbericht zum gegenwärtigen Wissen über die N2O-Produktion und die dafür verantwortlichen Prozesse verfasst. In ihrer Publikation in der Zeitschrift „Philosophical Transactions of the Royal Society B: Biological Sciences“ führen die Wissenschaftler acht verschiedene mikrobiologische und chemische Prozesse der N2O-Entstehung auf. Zugleich sind derzeit acht Prozesse bekannt, die N2O zu N2 reduzieren.

Die mikrobielle Reduktion von N2O zu N2 ist bisher allerdings kaum verstanden. Denn Messungen der N2-Neubildung – im Gegensatz zu N2O – sind technisch enorm schwierig, da die Atmosphäre zu 78 Prozent aus N2 besteht. Die bisher gebräuchlichste Methode zur Messung von N2-N2O-Emissions-Verhältnissen ist die sogenannte Acetylen-Inhibierungsmethode, die das Problem der N2-Messung durch Hemmung der N2O-Reduktion umgeht: N2-Produktion wird indirekt als erhöhte N2O-Produktion bei Acetylen-Zugabe gemessen. Messungen mit dieser Methode ergaben, dass im Durchschnitt pro Kilogramm tatsächlich emittiertem N2O etwa die gleiche Menge N2O durch Denitrifikation zu N2 reduziert wurde und somit nicht als Treibhausgas und Ozonzerstörer, sondern als harmloses Gas in die Atmosphäre gelangte.

Tatsächlich aber ist der N2O-Verbrauch durch Umwandlung in N2 wesentlich größer, wie die Wissenschaftler vom IMK-IFU des KIT in ihrer Publikation darlegen. „Die Acetylen-Inhibitierungsmethode führt zu systematischer Unterschätzung der Reduktion von N2O zu N2“, erläutert Dr. Michael Dannenmann. Dies zeigt die Anwendung von modernen Methoden zur direkten Messung der N2-Produktion, wie der am KIT entwickelten Helium-Inkubationsmethode. Studien, die auf solchen technisch aufwendigen, direkten und damit zuverlässigen N2-Messungen basieren, kommen zu dem Ergebnis, dass für eine bestimmte Menge an emittiertem N2O im Durchschnitt etwa die vierfache Menge zu N2 reduziert wurde. Damit kommt der N2O-Reduktion zu N2 eine wesentlich wichtigere regulative Rolle bei der Deaktivierung reaktiven Stickstoffs zu als bisher angenommen. Dies lässt darauf schließen, dass Böden reaktiven Stickstoff in Ökosystemen wesentlich effektiver in unschädlicher Form an die Atmosphäre zurückführen als bisher gedacht.

Die Ergebnisse der Forscher bedeuten zwar nicht, dass weniger N2O emittiert wird. Die größere Bedeutung der N2O-Reduktion zu N2 weist jedoch einen Weg zur zukünftigen Minderung von N2O-Emissionen: „Wenn es uns gelingt, die Regulierung der N2O-Reduktion besser zu verstehen, dann können wir, beispielsweise durch angepasste Bewirtschaftung in landwirtschaftlichen Ökosystemen, das klima- und ozonschädliche Distickstoffoxid verstärkt in ein völlig harmloses Gas umwandeln“, sagt Michael Dannenmann. Wie die KIT-Wissenschaftler erklären, bedarf es dazu eines noch besseren Verständnisses, wie die mikrobielle Diversität im Boden die Reduktion von N2O zu N2 beeinflusst. Neue molekularbiologische Ansätze liefern dazu erste vielversprechende Erkenntnisse.

Klaus Butterbach-Bahl, Elizabeth Baggs, Michael Dannenmann, Ralf Kiese, Sophie Zechmeister-Boltenstern: Nitrous oxide emissions from soils – how well do we understand the processes and their controls? Philosophical Transactions of the Royal Society B: Biological Sciences; 368; July 5, 2013. DOI 10.1098/rstb.2013.0122

Weiterer Kontakt:
Margarete Lehné, Pressereferentin, Tel.: +49 721 608-48121, Fax: +49 721 608-45681, Margarete.lehne@kit.edu

Das KIT-Zentrum Klima und Umwelt entwickelt Strategien und Technologien zur Sicherung der natürlichen Lebensgrundlagen: Dafür erarbeiten 660 Mitarbeiterinnen und Mitarbeiter aus 32 Instituten Grundlagen- und Anwendungswissen zum Klima- und Umweltwandel. Dabei geht es nicht nur um die Beseitigung der Ursachen von Umweltproblemen, sondern zunehmend um die Anpassung an veränderte Verhältnisse.

Das Karlsruher Institut für Technologie (KIT) ist eine Körperschaft des öffentlichen Rechts nach den Gesetzen des Landes Baden-Württemberg. Es nimmt sowohl die Mission einer Universität als auch die Mission eines nationalen Forschungszentrums in der Helmholtz-Gemeinschaft wahr. Thematische Schwerpunkte der Forschung sind Energie, natürliche und gebaute Umwelt sowie Gesellschaft und Technik, von fundamentalen Fragen bis zur Anwendung. Mit rund 9000 Mitarbeiterinnen und Mitarbeitern, darunter knapp 6000 in Wissenschaft und Lehre, sowie 24 000 Studierenden ist das KIT eine der größten Forschungs- und Lehreinrichtungen Europas. Das KIT verfolgt seine Aufgaben im Wissensdreieck Forschung – Lehre – Innovation.

Monika Landgraf | idw
Weitere Informationen:
http://www.kit.edu

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Wie der Nordatlantik zum Wärmepirat wurde
23.01.2017 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

nachricht Neues Forschungsspecial zu Meeren, Ozeanen und Gewässern
18.01.2017 | Hochschule für Angewandte Wissenschaften Hamburg

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wie der Nordatlantik zum Wärmepirat wurde

23.01.2017 | Geowissenschaften

Immunabwehr ohne Kollateralschaden

23.01.2017 | Biowissenschaften Chemie

Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

23.01.2017 | Physik Astronomie