Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Reduktion von klimaschädlichem Lachgas bisher unterschätzt

13.06.2013
Böden können reaktiven Stickstoff effektiv in unschädlicher Form an die Atmosphäre zurückführen. Zu diesem Schluss kommt ein Statusbericht zur Produktion von Lachgas, an dem Forscher des KIT-Instituts für Meteorologie und Klimaforschung führend mitgewirkt haben.

Wie die Wissenschaftler in der Zeitschrift „Philosophical Transactions of the Royal Society B: Biological Sciences“ darlegen, besitzt die Reduktion von klimaschädlichem Distickstoffoxid zu unbedenklichem molekularem Distickstoff eine wesentlich wichtigere Bedeutung als bisher angenommen. Diese Erkenntnis weist einen Weg zur künftigen Minderung von Lachgasemissionen.


Messroboter: Das vom KIT betriebene Gerät misst Lachgasemissionen aus dem Boden vollautomatisch.
(Foto: Dr. Eugenio Díaz-Pines)

Lachgas (Distickstoffoxid, N2O) trägt als Treibhausgas zum Klimawandel bei und schädigt die Ozonschicht: So ist die Treibhauswirkung von einer bestimmten Menge Distickstoffoxid in der Atmosphäre rund 300-mal stärker als die der gleichen Menge Kohlenstoffdioxid (CO2). Seit der Verbannung von Fluorchlorkohlenwasserstoffen (FCKW) zerstört N2O zudem die stratosphärische Ozonschicht stärker als jeder andere Stoff.

Die Menschheit hat seit Beginn der Industrialisierung vor allem durch Herstellung und Verwendung von Mineraldünger den globalen Kreislauf von reaktivem Stickstoff mehr als verdoppelt. Dies hat nicht nur zu einer schleichenden Anreicherung von Nährstoffen in Ökosystemen geführt, was unter anderem die Biodiversität erheblich verringert, sondern auch zu einer Intensivierung von Stickstoffumsetzungen in Böden und Gewässern.

Durch den somit verstärkten Abbau von Nitrat durch spezielle Mikroorganismen – die sogenannte mikrobielle Denitrifikation – wird vermehrt Lachgas im Boden gebildet und in die Atmosphäre emittiert. So ist die Konzentration von N2O in der Atmosphäre im Vergleich zu vorindustrieller Zeit um etwa 20 Prozent angestiegen. Denitrifikation produziert jedoch nicht nur N2O, sondern kann dieses auch zu molekularem Distickstoff (N2) reduzieren. „Somit entspricht die aus Böden an die Atmosphäre entweichende Lachgasmenge der Bilanz aus N2O-Produktion und der Reduktion zu N2. Molekularer Distickstoff ist unter Umweltaspekten völlig unbedenklich“, erläutert Dr. Michael Dannemann vom Institut für Meteorologie und Klimaforschung – Atmosphärische Umweltforschung (IMK-IFU) des KIT.

Ein Team von Wissenschaftlern um die KIT-Klimaforscher Professor Klaus Butterbach-Bahl, Dr. Ralf Kiese und Dr. Michael Dannenmann vom IMK-IFU hat nun auf Einladung der britischen Royal Society einen Statusbericht zum gegenwärtigen Wissen über die N2O-Produktion und die dafür verantwortlichen Prozesse verfasst. In ihrer Publikation in der Zeitschrift „Philosophical Transactions of the Royal Society B: Biological Sciences“ führen die Wissenschaftler acht verschiedene mikrobiologische und chemische Prozesse der N2O-Entstehung auf. Zugleich sind derzeit acht Prozesse bekannt, die N2O zu N2 reduzieren.

Die mikrobielle Reduktion von N2O zu N2 ist bisher allerdings kaum verstanden. Denn Messungen der N2-Neubildung – im Gegensatz zu N2O – sind technisch enorm schwierig, da die Atmosphäre zu 78 Prozent aus N2 besteht. Die bisher gebräuchlichste Methode zur Messung von N2-N2O-Emissions-Verhältnissen ist die sogenannte Acetylen-Inhibierungsmethode, die das Problem der N2-Messung durch Hemmung der N2O-Reduktion umgeht: N2-Produktion wird indirekt als erhöhte N2O-Produktion bei Acetylen-Zugabe gemessen. Messungen mit dieser Methode ergaben, dass im Durchschnitt pro Kilogramm tatsächlich emittiertem N2O etwa die gleiche Menge N2O durch Denitrifikation zu N2 reduziert wurde und somit nicht als Treibhausgas und Ozonzerstörer, sondern als harmloses Gas in die Atmosphäre gelangte.

Tatsächlich aber ist der N2O-Verbrauch durch Umwandlung in N2 wesentlich größer, wie die Wissenschaftler vom IMK-IFU des KIT in ihrer Publikation darlegen. „Die Acetylen-Inhibitierungsmethode führt zu systematischer Unterschätzung der Reduktion von N2O zu N2“, erläutert Dr. Michael Dannenmann. Dies zeigt die Anwendung von modernen Methoden zur direkten Messung der N2-Produktion, wie der am KIT entwickelten Helium-Inkubationsmethode. Studien, die auf solchen technisch aufwendigen, direkten und damit zuverlässigen N2-Messungen basieren, kommen zu dem Ergebnis, dass für eine bestimmte Menge an emittiertem N2O im Durchschnitt etwa die vierfache Menge zu N2 reduziert wurde. Damit kommt der N2O-Reduktion zu N2 eine wesentlich wichtigere regulative Rolle bei der Deaktivierung reaktiven Stickstoffs zu als bisher angenommen. Dies lässt darauf schließen, dass Böden reaktiven Stickstoff in Ökosystemen wesentlich effektiver in unschädlicher Form an die Atmosphäre zurückführen als bisher gedacht.

Die Ergebnisse der Forscher bedeuten zwar nicht, dass weniger N2O emittiert wird. Die größere Bedeutung der N2O-Reduktion zu N2 weist jedoch einen Weg zur zukünftigen Minderung von N2O-Emissionen: „Wenn es uns gelingt, die Regulierung der N2O-Reduktion besser zu verstehen, dann können wir, beispielsweise durch angepasste Bewirtschaftung in landwirtschaftlichen Ökosystemen, das klima- und ozonschädliche Distickstoffoxid verstärkt in ein völlig harmloses Gas umwandeln“, sagt Michael Dannenmann. Wie die KIT-Wissenschaftler erklären, bedarf es dazu eines noch besseren Verständnisses, wie die mikrobielle Diversität im Boden die Reduktion von N2O zu N2 beeinflusst. Neue molekularbiologische Ansätze liefern dazu erste vielversprechende Erkenntnisse.

Klaus Butterbach-Bahl, Elizabeth Baggs, Michael Dannenmann, Ralf Kiese, Sophie Zechmeister-Boltenstern: Nitrous oxide emissions from soils – how well do we understand the processes and their controls? Philosophical Transactions of the Royal Society B: Biological Sciences; 368; July 5, 2013. DOI 10.1098/rstb.2013.0122

Weiterer Kontakt:
Margarete Lehné, Pressereferentin, Tel.: +49 721 608-48121, Fax: +49 721 608-45681, Margarete.lehne@kit.edu

Das KIT-Zentrum Klima und Umwelt entwickelt Strategien und Technologien zur Sicherung der natürlichen Lebensgrundlagen: Dafür erarbeiten 660 Mitarbeiterinnen und Mitarbeiter aus 32 Instituten Grundlagen- und Anwendungswissen zum Klima- und Umweltwandel. Dabei geht es nicht nur um die Beseitigung der Ursachen von Umweltproblemen, sondern zunehmend um die Anpassung an veränderte Verhältnisse.

Das Karlsruher Institut für Technologie (KIT) ist eine Körperschaft des öffentlichen Rechts nach den Gesetzen des Landes Baden-Württemberg. Es nimmt sowohl die Mission einer Universität als auch die Mission eines nationalen Forschungszentrums in der Helmholtz-Gemeinschaft wahr. Thematische Schwerpunkte der Forschung sind Energie, natürliche und gebaute Umwelt sowie Gesellschaft und Technik, von fundamentalen Fragen bis zur Anwendung. Mit rund 9000 Mitarbeiterinnen und Mitarbeitern, darunter knapp 6000 in Wissenschaft und Lehre, sowie 24 000 Studierenden ist das KIT eine der größten Forschungs- und Lehreinrichtungen Europas. Das KIT verfolgt seine Aufgaben im Wissensdreieck Forschung – Lehre – Innovation.

Monika Landgraf | idw
Weitere Informationen:
http://www.kit.edu

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Der Salzwasser-Wächter auf der Darßer Schwelle
19.09.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

6. Stralsunder IT-Sicherheitskonferenz im Zeichen von Smart Home

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

OLED auf hauchdünnem Edelstahl

21.09.2017 | Messenachrichten

Weniger (Flug-)Lärm dank Mathematik

21.09.2017 | Physik Astronomie

In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät

21.09.2017 | Geowissenschaften