Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Recycling im tiefen Erdinnern läuft schneller als gedacht

11.08.2011
Abgesunkene Ozeankruste tritt in Vulkanen bereits nach 500 Millionen Jahren wieder an die Oberfläche

Das Geo-Recycling läuft in Vulkanen viel schneller ab, als Wissenschaftler bislang annahmen. Gestein des Erdmantels, das wegen der Bewegung der Erdplatten ins Erdinnere absinkt, gelangt über Vulkane bereits nach rund 500 Millionen Jahren wieder an die Erdoberfläche. Das haben Forscher des Max-Planck-Instituts für Chemie in Mainz anhand vulkanischer Gesteinsproben festgestellt. Zuvor gingen Geowissenschaftler davon aus, dass dieser Prozess zwei Milliarden Jahre dauert.


Olivinkristall des Mauna Loa-Vulkans mit einer Breite von knapp einem Millimeter. Die braunen Ovale sind glasig erstarrte Einschlüsse, die als geschmolzene Tropfen in den entstehenden Olivinkristall gelangten. Bei den schwarzen Punkten handelt es sich um Gasblasen. In den glasigen Einschlüssen findet man Strontiumisotopenverhältnisse, wie sie im Meerwasser vor 500 Millionen Jahren vorkamen. © Sobolev, Max-Planck-Institut für Chemie

So gut wie alle Inseln in den Ozeanen sind Vulkane. Mehrere von ihnen, wie zum Beispiel Hawaii, sind aus dem untersten Teil des Erdmantels entstanden. Dieser geologische Prozess ähnelt der Bewegung farbiger Flüssigkeiten in einer Lavalampe: Heißes Gestein steigt in zylindrischen Säulen, den so genannten Mantel-Plumes, aus fast 3000 Kilometer Tiefe auf. In der Nähe der Oberfläche schmilzt es, weil der Druck nachlässt, und bricht in Vulkanen aus dem Erdinnern hervor. Die Plumes wiederum stammen ursprünglich von der ehemaligen Ozeankruste, die in der Frühzeit der Erde bis zum Boden des Erdmantels abgesunken ist. In den Plumes kommt dieses Gestein wieder an die Erdoberfläche. Bisher nahmen Forscher an, dass dieses Recycling etwa zwei Milliarden Jahre dauert.

Die chemische Analyse von winzigen, glasigen Einschlüssen im Olivinbasalt des Mauna Loa Vulkans auf Hawaii lieferte jetzt aber die geologische Überraschung: Der gesamte Recyclingvorgang benötigt maximal eine halbe Milliarde Jahre und läuft somit viermal schneller als bisher angenommen ab.

In den mikroskopisch kleinen Einschlüssen des Gesteins finden sich Spurenelemente, die ursprünglich im Meerwasser gelöst waren und die Datierung des Recycling-Prozesses erlauben. Bevor die alte Ozeankruste in den Mantel absinkt, saugt sie sich nämlich mit Meerwasser voll, das die aufschlussreichen Spurenelemente in dem Gestein hinterlässt.

Isotopen-Verhältnis ermöglicht die Datierung

Um die Einschlüsse untersuchen zu können, hatten die Mainzer Wissenschaftler eine spezielle Laser-Massenspektrometrie-Methode entwickelt. Mit ihrer Hilfe lassen sich unter anderem Isotope von extrem geringen Strontium-Mengen analysieren. Strontium ist ein chemisches Element, das typischerweise in Spuren auch im Meerwasser vorkommt. Die Isotope eines chemischen Elementes weisen die gleiche Protonenzahl, aber unterschiedliche Neutronenzahlen auf. Da sich das Isotopenverhältnis des Strontiums im Meerwasser während der Erdgeschichte ändert, lässt sich daraus das Alter der Meerwasserreste und des umgebenden Gesteins bestimmen.

Zu ihrer Überraschung fanden die Max-Planck-Forscher in ihren Proben ein Strontium-Isotopenverhältnis, das auf ein Alter von weniger als 500 Millionen Jahren schließen lässt. Daher muss auch das Gestein, aus dem die Hawaii-Basalte entstehen, viel jünger sein als bislang angenommen.

„Das Strontium des Meerwassers ist offenbar mit der Ozeankruste in den tiefen Erdmantel gelangt, aus dem es bereits nach einer halben Milliarde Jahre in den Laven der Hawaii-Vulkane wieder zu Tage tritt“, erklärt Klaus Peter Jochum, Mitautor der Publikation. „Es jetzt wieder zu entdecken, ist eine Riesenüberraschung.“

Ebenso überraschend fanden die Wissenschaftler die große Bandbreite der Isotopenverhältnisse in den Einschlüssen einer einzigen Probe des Olivinbasalts. „Sie ist viel größer als in allen Lava-Proben, die bislang von den Vulkanen Hawaiis untersucht wurden“, sagt Alexander Sobolev. „Das deutet darauf hin, dass der Erdmantel auch in kleinen Bereichen chemisch viel heterogener ist als wir vorher dachten.“ Die Vielfalt hat sich allerdings nur in den Schmelzeinschlüssen erhalten, weil die Lava so gut durchmischt wurde.

Sobolev, Jochum und ihre Kollegen erwarten, auch bei anderen Vulkanen das gleiche Isotopenverhältnis nachweisen zu können und so die Recyclingdauer der Ozeankruste noch genauer bestimmen zu können.

Ansprechpartner
Prof. Alexander Sobolev
Max-Planck-Institut für Chemie, Mainz
Telefon: +49 6131 305-609
E-Mail: alexander.sobolev@mpic.de
Dr. Klaus Peter Jochum
Max-Planck-Institut für Chemie, Mainz
Telefon: +49 6131 305-216
E-Mail: k.jochum@mpic.de
Dr. Susanne Benner
Press and Public Relations
Max-Planck-Institut für Chemie, Mainz
Telefon: +49 6131 305-465
Fax: +49 6131 305-388
E-Mail: susanne.benner@mpic.de
Originalveröffentlichung
Alexander V. Sobolev, Albrecht W. Hofmann, Klaus Peter Jochum, Dmitry V. Kuzmin & Brigitte Stoll
A young source for the Hawaiian plume
Nature, 10 August 2011

Dr. Susanne Benner | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/4393883/

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Expedition ans Ende der Welt
29.11.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lakkolithe können auch während eines Vulkanausbruchs entstehen
24.11.2016 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie