Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Recycling im tiefen Erdinnern läuft schneller als gedacht

11.08.2011
Abgesunkene Ozeankruste tritt in Vulkanen bereits nach 500 Millionen Jahren wieder an die Oberfläche

Das Geo-Recycling läuft in Vulkanen viel schneller ab, als Wissenschaftler bislang annahmen. Gestein des Erdmantels, das wegen der Bewegung der Erdplatten ins Erdinnere absinkt, gelangt über Vulkane bereits nach rund 500 Millionen Jahren wieder an die Erdoberfläche. Das haben Forscher des Max-Planck-Instituts für Chemie in Mainz anhand vulkanischer Gesteinsproben festgestellt. Zuvor gingen Geowissenschaftler davon aus, dass dieser Prozess zwei Milliarden Jahre dauert.


Olivinkristall des Mauna Loa-Vulkans mit einer Breite von knapp einem Millimeter. Die braunen Ovale sind glasig erstarrte Einschlüsse, die als geschmolzene Tropfen in den entstehenden Olivinkristall gelangten. Bei den schwarzen Punkten handelt es sich um Gasblasen. In den glasigen Einschlüssen findet man Strontiumisotopenverhältnisse, wie sie im Meerwasser vor 500 Millionen Jahren vorkamen. © Sobolev, Max-Planck-Institut für Chemie

So gut wie alle Inseln in den Ozeanen sind Vulkane. Mehrere von ihnen, wie zum Beispiel Hawaii, sind aus dem untersten Teil des Erdmantels entstanden. Dieser geologische Prozess ähnelt der Bewegung farbiger Flüssigkeiten in einer Lavalampe: Heißes Gestein steigt in zylindrischen Säulen, den so genannten Mantel-Plumes, aus fast 3000 Kilometer Tiefe auf. In der Nähe der Oberfläche schmilzt es, weil der Druck nachlässt, und bricht in Vulkanen aus dem Erdinnern hervor. Die Plumes wiederum stammen ursprünglich von der ehemaligen Ozeankruste, die in der Frühzeit der Erde bis zum Boden des Erdmantels abgesunken ist. In den Plumes kommt dieses Gestein wieder an die Erdoberfläche. Bisher nahmen Forscher an, dass dieses Recycling etwa zwei Milliarden Jahre dauert.

Die chemische Analyse von winzigen, glasigen Einschlüssen im Olivinbasalt des Mauna Loa Vulkans auf Hawaii lieferte jetzt aber die geologische Überraschung: Der gesamte Recyclingvorgang benötigt maximal eine halbe Milliarde Jahre und läuft somit viermal schneller als bisher angenommen ab.

In den mikroskopisch kleinen Einschlüssen des Gesteins finden sich Spurenelemente, die ursprünglich im Meerwasser gelöst waren und die Datierung des Recycling-Prozesses erlauben. Bevor die alte Ozeankruste in den Mantel absinkt, saugt sie sich nämlich mit Meerwasser voll, das die aufschlussreichen Spurenelemente in dem Gestein hinterlässt.

Isotopen-Verhältnis ermöglicht die Datierung

Um die Einschlüsse untersuchen zu können, hatten die Mainzer Wissenschaftler eine spezielle Laser-Massenspektrometrie-Methode entwickelt. Mit ihrer Hilfe lassen sich unter anderem Isotope von extrem geringen Strontium-Mengen analysieren. Strontium ist ein chemisches Element, das typischerweise in Spuren auch im Meerwasser vorkommt. Die Isotope eines chemischen Elementes weisen die gleiche Protonenzahl, aber unterschiedliche Neutronenzahlen auf. Da sich das Isotopenverhältnis des Strontiums im Meerwasser während der Erdgeschichte ändert, lässt sich daraus das Alter der Meerwasserreste und des umgebenden Gesteins bestimmen.

Zu ihrer Überraschung fanden die Max-Planck-Forscher in ihren Proben ein Strontium-Isotopenverhältnis, das auf ein Alter von weniger als 500 Millionen Jahren schließen lässt. Daher muss auch das Gestein, aus dem die Hawaii-Basalte entstehen, viel jünger sein als bislang angenommen.

„Das Strontium des Meerwassers ist offenbar mit der Ozeankruste in den tiefen Erdmantel gelangt, aus dem es bereits nach einer halben Milliarde Jahre in den Laven der Hawaii-Vulkane wieder zu Tage tritt“, erklärt Klaus Peter Jochum, Mitautor der Publikation. „Es jetzt wieder zu entdecken, ist eine Riesenüberraschung.“

Ebenso überraschend fanden die Wissenschaftler die große Bandbreite der Isotopenverhältnisse in den Einschlüssen einer einzigen Probe des Olivinbasalts. „Sie ist viel größer als in allen Lava-Proben, die bislang von den Vulkanen Hawaiis untersucht wurden“, sagt Alexander Sobolev. „Das deutet darauf hin, dass der Erdmantel auch in kleinen Bereichen chemisch viel heterogener ist als wir vorher dachten.“ Die Vielfalt hat sich allerdings nur in den Schmelzeinschlüssen erhalten, weil die Lava so gut durchmischt wurde.

Sobolev, Jochum und ihre Kollegen erwarten, auch bei anderen Vulkanen das gleiche Isotopenverhältnis nachweisen zu können und so die Recyclingdauer der Ozeankruste noch genauer bestimmen zu können.

Ansprechpartner
Prof. Alexander Sobolev
Max-Planck-Institut für Chemie, Mainz
Telefon: +49 6131 305-609
E-Mail: alexander.sobolev@mpic.de
Dr. Klaus Peter Jochum
Max-Planck-Institut für Chemie, Mainz
Telefon: +49 6131 305-216
E-Mail: k.jochum@mpic.de
Dr. Susanne Benner
Press and Public Relations
Max-Planck-Institut für Chemie, Mainz
Telefon: +49 6131 305-465
Fax: +49 6131 305-388
E-Mail: susanne.benner@mpic.de
Originalveröffentlichung
Alexander V. Sobolev, Albrecht W. Hofmann, Klaus Peter Jochum, Dmitry V. Kuzmin & Brigitte Stoll
A young source for the Hawaiian plume
Nature, 10 August 2011

Dr. Susanne Benner | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/4393883/

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Internationales Team um Oldenburger Meeresforscher untersucht Meeresoberfläche
21.03.2017 | Carl von Ossietzky-Universität Oldenburg

nachricht Weniger Sauerstoff – ist Humboldts Nährstoffspritze in Gefahr?
17.03.2017 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen