Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Rechenrekord auf dem SuperMUC

15.04.2014

Erdbebensimulation erzielt mehr als eine Billiarde Rechenoperationen pro Sekunde.

Ein Team aus Informatikern, Mathematikern und Geophysikern der Technischen Universität München (TUM) und der Ludwig-Maximilians-Universität München (LMU) haben – mit Unterstützung durch das Leibniz-Rechenzentrum der Bayerischen Akademie der Wissenschaften (LRZ) – die an der LMU entstandene Erdbebensimulationssoftware SeisSol auf dem Höchstleistungsrechner SuperMUC des LRZ so effizient optimiert, dass die „magische“ Marke von einem Petaflop pro Sekunde geknackt wurde – einer Rechenleistung von einer Billiarde Rechenoperationen pro Sekunde.


Visualisierung von Schwingungen im Inneren des Vulkans Merapi auf der Insel Java, erstellt mit dem Programm SeisSol auf dem SuperMUC

Bild: Alex Breuer (TUM) / Christian Pelties (LMU)

Mithilfe der Erdbebensimulationssoftware SeisSol erforschen Geophysiker Bruchprozesse und seismische Wellen im Untergrund der Erde. Ihr Ziel ist es, Erdbeben möglichst realistisch zu simulieren, um auf zukünftige Ereignisse besser vorbereitet zu sein und um die zugrunde liegenden Mechanismen besser zu verstehen. Die Berechnung dieser Simulationen ist jedoch so komplex, dass selbst Supercomputer an ihre Grenzen stoßen.

Im Rahmen einer Kooperation passten nun die Arbeitsgruppen um Dr. Christian Pelties vom Department für Geo- und Umweltwissenschaften der LMU und Professor Michael Bader vom Institut für Informatik der TU München das Programm SeisSol so an die Parallelrechenstruktur des Garchinger Höchstleistungsrechners SuperMUC an, dass die Berechnungen um einen Faktor Fünf schneller wurden. Mit einem virtuellen Experiment erreichten sie auf dem SuperMUC einen neuen Rekord: Um Vibrationen innerhalb des geometrisch sehr komplizierten Vulkans Merapi auf der Insel Java zu simulieren, führte der Supercomputer 1,09 Billiarden Rechenoperationen pro Sekunde durch. SeisSol konnte diese ungewöhnlich hohe Rechenleistung über die gesamte Laufzeit von drei Stunden halten und nutzte dabei alle 147.456 Rechenkerne des SuperMUC.

Möglich wurde das durch eine umfassende Optimierung und die komplette Parallelisierung aller 70.000 Codezeilen von SeisSol, das nun Rechenleistungen von bis zu 1,42 Petaflop pro Sekunde erzielen kann. Dies entspricht 44,5 Prozent der theoretisch auf dem SuperMUC verfügbaren Leistung. Damit gehört SeisSol weltweit zu den effizientesten Simulationsprogrammen seiner Art. „Dank der nun möglichen hohen Rechenleistungen können wir fünf Mal so viele oder größere Modelle durchrechnen und erreichen deutlich präzisere Ergebnisse. Unsere Simulationen kommen so der Realität immer näher“, sagt der Geophysiker Dr. Christian Pelties vom Department für Geo- und Umweltwissenschaften der LMU. „Damit wird es möglich, viele grundlegende Mechanismen von Erdbeben besser zu verstehen, um hoffentlich besser auf zukünftige Ereignisse vorbereitet zu sein.“

Als nächste Schritte sind Simulationen von Erdbeben geplant, die sowohl den Bruchprozess auf der Meterskala als auch die dadurch erzeugten zerstörerischen seismischen Wellen simulieren, die sich über hunderte Kilometer ausbreiten. Die Ergebnisse sollen das Verständnis von Erdbeben verbessern und eine genauere Einschätzung möglicher zukünftiger Ereignisse ermöglichen. „Die Beschleunigung der Simulationssoftware um einen Faktor Fünf ist nicht nur für die geophysikalische Forschung ein wichtiger Fortschritt“, sagt Professor Michael Bader vom Institut für Informatik der TU München. „Zugleich bereiten wir die verwendeten Methoden und Softwarepakete schon für die nächste Generation von Supercomputern vor, auf denen entsprechende Simulationen routinemäßig für verschiedene Anwendungen in den Geowissenschaften eingesetzt werden sollen“.

Gefördert wurde das Projekt von der Volkswagen Stiftung (Projekt ASCETE), vom Kompetenznetzwerk für Wissenschaftliches Höchstleistungsrechnen in Bayern (KONWIHR), von der Deutschen Forschungsgemeinschaft und durch das Leibniz Rechenzentrum der Bayerischen Akademie der Wissenschaften. Die Weiterentwicklung von SeisSol wird zudem unterstützt durch die Projekte „DEEP Extended Reach“, VERCE und QUEST der Europäischen Kommission.

Am Projekt arbeiteten neben Michael Bader und Christian Pelties außerdem Alexander Breuer, Dr. Alexander Heinecke und Sebastian Rettenberger (TUM) sowie Dr. Alice-Agnes Gabriel Stefan Wenk (LMU) mit. Die Ergebnisse werden im Juni auf der International Supercomputing Conference in Leipzig (ISC’14, Leipzig, 22.-26 Juni 2014) vorgestellt (Titel: Sustained Petascale Performance of Seismic Simulations with SeisSol on SuperMUC)

Links:
Programm SeisSol: http://seissol.geophysik.uni-muenchen.de/
ASCETE Sudelfeld Summit: http://www.ascete.de
Website des Höchstleistungsrechners SuperMUC: http://www.lrz.de/supermuc/
International Supercomputing Conference 2014: http://www.isc-events.com/isc14/home.html

Kontakt:
Prof. Dr. Michael Bader
Institut für Informatik, Technische Universität München, Boltzmannstr. 3, 85748 Garching, Germany, Tel.: +49 89 35831 7810, E-Mail: bader@in.tum.de, Internet: http://www5.in.tum.de/~bader/

Dr. Christian Pelties
Geophysik, Department für Geo- und Umweltwissenschaften, Ludwig-Maximilians Universität München, Theresienstraße 41, 80333 München, Germany, Tel.: +49 89 2180 4214,

E-Mail: pelties@geophysik.uni-muenchen.de,

Internet: http://www.geophysik.uni-muenchen.de/Members/pelties

Dr. Ellen Latzin | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen
26.04.2017 | Leibniz-Institut für Troposphärenforschung e. V.

nachricht Flechten aus dem Bernsteinwald
25.04.2017 | Georg-August-Universität Göttingen

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie