Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Rastlose Flussläufe

07.03.2014

Die Landmassen der Erde sind von einem Adernetz aus Flussläufen überzogen. Sie formen die Landschaft, bilden Grenzen und bieten Lebensraum. Und sie sind dynamischer, als bisher angenommen, wie Forschende der ETH und des MIT in Boston nun zeigen.

Der Tiber floss bereits durch Rom, als Julius Cäsar regierte und fliesst auch heute noch beständig unter den Füssen der Touristen, welche die Engelsbrücke überqueren. Unser Bild von Flüssen ist das von unveränderlichen Bestandteilen der Landschaft.

Dieser Schein trügt, wie Forschende des MIT und der ETH Zürich nun zeigen: Flussläufe sind viel veränderlicher, als bisher angenommen. Und erstmals können sie Vorhersagen treffen, wie und in welche Richtung sich Flussläufe verschieben.

Sean Willett, ETH-Professor am Institut für Geologie, und seine Kollegen an der ETH und vom Massachusetts Institute of Technology (MIT) entwickelten eine Berechnungsmethode, welche den Grad des Gleichgewichts zwischen Flusssystemen bestimmt. Je ausgeglichener benachbarte Flusssysteme sind, desto weniger werden sie sich im Laufe der Zeit verändern.

Befinden sich Flusssysteme im Ungleichgewicht, verändert sich das Flussnetzwerk, um ein Gleichgewicht herzustellen, das heisst, dass sich Flussarme verschieben. «Dabei kann sogar ein Fluss einem anderen buchstäblich das Wasser abgraben und sein Flussbett nahezu trocken legen», erklärt Willett.

Das Streben nach Balance

Fällt Regen auf eine Landschaft und sammelt sich erst in Rinnsalen, die sich dann zu einem Bach zusammenfinden, nennen Forscher dieses Stück Landschaft ein Wassereinzugsgebiet. Liegen zwei Wassereinzugsgebiete getrennt von einer Bergkuppe und ist das Gelände auf beiden Seiten unterschiedlich steil abfallend, erodiert der Boden auf einer Seite der Wasserscheide schneller als auf der anderen.

So entsteht ein Ungleichgewicht zwischen den beiden Einzugsgebieten. Im Laufe mehrerer Millionen Jahre trägt das Wasser die eine Seite des Berges schneller ab als die andere, so dass sich das eine Wassereinzugsgebiet hin zum anderen verschiebt, bis beide in der Balance sind.

Mit der neuen Berechnungsmethode, die Charakteristika wie die Geometrie der Flussläufe und ihre Höhenlage über dem Meer berücksichtigt, untersuchten Willett und seine Kollegen drei grosse Flusssysteme und die sie umgebenden Landschaften: im Lössplateau in China, in der östlichen Zentralkette Taiwans und im Südosten der USA.

Im tektonisch stabilen Lössplateau hat das dortige Flussnetzwerk einen nahezu ausbalancierten Zustand erreicht, während in der erdgeschichtlich relativ jungen Zentralkette Taiwans noch ein hoher Grad an Ungleichgewicht vorliegt. Dementsprechend sind die Flussläufe dort in steter – wenn auch langsamer – Veränderung. Anhand ihrer Berechnungen können die Forschenden auch vorhersagen, in welche Richtung sich die Grenzen zwischen den verschiedenen Wassereinzugsgebieten verschieben.

Dynamische Landschaften und Artenvielfalt

Unerwartet waren insbesondere die Ergebnisse im Südosten der USA: Obwohl die Gegend seit hunderten Millionen Jahren relativ stabil war – das heisst, nicht durch Kontinentaldrift oder Erdbeben verändert wurde – sind auch dort die Flusssysteme im Ungleichgewicht und in Bewegung. Die Forschenden können aus dem Grad der Dysbalance zwischen den Einzugsgebiet zweier Flüsse in Georgia und South Carolina ablesen, dass der Savannah River dem Apalachicola River das Wasser abgräbt.

Hydrologen haben vor Ort bereits Anzeichen dafür gefunden, dass dies tatsächlich geschieht. Vor allem für im Wasser lebende Tiere und Pflanzen bedeutet dies, sich an neue Gegebenheiten anzupassen. Durch Veränderungen der Landschaft können Populationen getrennt oder zusammengeführt werden, so dass sich Genpools entweder separat weiterentwickeln oder neu durchmischen. 

Flüsse sind nicht nur selber ein Ökosystem, sie bilden auch eine natürliche Grenze zwischen verschiedenen Ökosystemen. Die Dynamik von Flussläufen und die Artenvielfalt hängen deshalb direkt zusammen. Je mehr sich eine Landschaft verändert – und Flüsse sind eine treibende Kraft hinter solchen Veränderungen – desto eher verändert sich die Zusammensetzung der in diesem Gebiet vorkommenden Arten. So hat die grosse Artenvielfalt des US-amerikanischen Südostens, der weltweit als Hotspot der Biodiversität gilt, vermutlich auch damit zu tun, dass sich die dortigen Flusssysteme wandeln.

Entstehungsgeschichte enträtseln

«Bisher dachten Wissenschaftler, es brauche zwischen einer und zehn Millionen Jahre, bis ein Flusssystem ein Gleichgewicht erreicht», sagt Willett. Betrachte man den Südosten der USA, wo tektonisch seit fast 200 Millionen Jahren kaum etwas passiert ist, und wo die Flusssysteme noch immer weit davon entfernt sind, ausgeglichen zu sein, müsse man eher von mehreren hundert Millionen Jahren ausgehen. «Da sich während dieser Zeit die Landschaft durch Erdbeben und Vulkanausbrüche verändert, erreichen Flusssysteme vermutlich nie ein stabiles Gleichgewicht.»

Mithilfe ihrer Berechnungsmethode wollen Willett und seine Kollegen nun weitere Flusssysteme der Erde untersuchen und ihrer Dynamik auf den Grund gehen. Insbesondere den Einfluss unterschiedlicher tektonischer Aktivität und verschiedener Klimabedingungen gelte es weiter zu ergründen, so Willett. Die neue Berechnungsmethode sei ein wertvolles Werkzeug, um zu verstehen, wie sich die Landschaft im Laufe der Jahrmillionen geformt hat und aus der Momentaufnahme der heutigen Landschaften ihre Entstehungsgeschichte zu entschlüsseln.

Literaturhinweis:
Willett SD, McCoy SW, Perron JT, Goren L, Chen CY: Dynamic Reorganization of River Basins. Science, March 6, 2014, DOI: 10.1126/science.1248765

Angelika Jacobs | ETH Zürich
Weitere Informationen:
http://www.ethz.ch

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Umrüstung auf LED-Beleuchtung spart Energie und Geld, führt aber zu steigender Lichtverschmutzung
23.11.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

nachricht Reibungswärme treibt hydrothermale Aktivität auf Enceladus an
23.11.2017 | Universität Heidelberg

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Reibungswärme treibt hydrothermale Aktivität auf Enceladus an

Computersimulation zeigt, wie der Eismond Wasser in einem porösen Gesteinskern aufheizt

Wärme aus der Reibung von Gestein, ausgelöst durch starke Gezeitenkräfte, könnte der „Motor“ für die hydrothermale Aktivität auf dem Saturnmond Enceladus sein....

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kinderanästhesie aktuell: Symposium für Ärzte und Pflegekräfte

23.11.2017 | Veranstaltungen

IfBB bei 12th European Bioplastics Conference mit dabei: neue Marktzahlen, neue Forschungsthemen

22.11.2017 | Veranstaltungen

Zahnimplantate: Forschungsergebnisse und ihre Konsequenzen – 31. Kongress der DGI

22.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Kinderanästhesie aktuell: Symposium für Ärzte und Pflegekräfte

23.11.2017 | Veranstaltungsnachrichten

Seminar „Leichtbau im Automobil- und Maschinenbau“ im Haus der Technik Berlin am 16. - 17. Januar 2018

23.11.2017 | Seminare Workshops

Biohausbau-Unternehmen Baufritz erhält von „ Capital“ die Auszeichnung „Beste Ausbilder Deutschlands“

23.11.2017 | Unternehmensmeldung