Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Rätselhaftes Methan: Nature Geoscience-Studie enthüllt biogeochemischen Mechanismus im Meeresboden

27.01.2014
In einer Studie, die gestern vorab online im Fachmagazin Nature Geoscience erschien, sind Bremer Meeresforscher gemeinsam mit einem US-Kollegen einem bislang ungelösten Rätsel im Meeresboden auf die Spur gekommen.

Das Team weist nach, warum Methan in manchen Schichten des Meeresbodens eine ungewöhnliche Isotopensignatur zeigt. Der jetzt entdeckte biogeochemische Vorgang könnte auch für andere Umsatzprozesses im Meer von Bedeutung sein.


Erstautor Marcos Yoshinaga
Foto: V. Diekamp, MARUM

Als Bremer Wissenschaftler des MARUM und des Max-Planck-Instituts für Marine Mikrobiologie kürzlich Isotopengehalte von Methan aus weltweiten Meeresablagerungen eingehender untersuchten, stießen sie immer wieder auf ein seltsames Phänomen: Dort, wo Mikroorganismen mit Hilfe von Sulfat im Meeresboden Methan verbrauchen, blieb im restlichen Methan nicht wie erwartet schwerer Kohlenstoff-13 zurück, sondern leichter Kohlenstoff-12.

„Dieser Befund wurde bis dato als klares Zeichen für eine biologische Methanbildung interpretiert“, erklärt Marcos Yoshinaga, Erstautor der Nature Geoscience-Studie, der bis vor kurzem am MARUM tätig war und sich aktuell an der Universität von São Paulo aufhält.

„Allerdings konnten wir uns keinen biogeochemischen Prozess vorstellen, der dieses bei aktivem Methanverbrauch unterstützten könnte“, ergänzt sein Kollege Marcus Elvert vom MARUM. Als Regel galt bislang nämlich, dass beim Methanverbrauch durch Oxidation vorrangig das leichtere Isotop Kohlenstoff-12 umgesetzt wird und sich somit das schwerere Kohlenstoff-13 im zurückbleibenden Methan im Meeresboden anreichert.

Um ihre Befunde zu überprüfen stellte das Forscherteam die im Meeresboden ablaufenden Prozesse im Laborexperiment nach. „Die mikrobiologische Sammlung des Max-Planck-Instituts mit ihren weltweit einmaligen Kulturen methanoxidierender Mikroorganismen bietet die Möglichkeit, solche besonderen Lebensbedingungen genau nachzubilden“ sagt Max-Planck-Mikrobiologe Thomas Holler. Und tatsächlich: wenn den Mikroorganismen nur sehr wenig Sulfat zur Verfügung stand, blieb in den Laborkulturen, wie auch im Meeresboden beobachtet, Methan zurück, dass mit dem leichten Isotop Kohlenstoff-12 angereichert war.

Zum Hintergrund: Methan hat zwei Facetten. Das Gas, das aus Kohlenstoff- und Wasserstoff besteht, dient einerseits als Energieträger und ist andererseits ein starkes Treibhausgas. Geschätzt wird, dass im Ozeangrund zwischen 500 und 10.000 Milliarden Tonnen gespeichert sind. Dass indes weniger als zwei Prozent des weltweit in die Atmosphäre freigesetzten Methans aus dem Meeresboden stammen, ist Mikroorganismen zu verdanken, die in sauerstofffreien Zonen unter Verwendung von Sulfat Methan umsetzen.

"Wir haben diesen Prozess untersucht, indem wir die Signaturen stabiler Isotope des Methans weltweit verglichen haben. Dabei erkannten wir ein ungewöhnliches Isotopenmuster, für das wir keine schlüssige Erklärung fanden" sagt John Pohlman vom US-amerikanischen Geological Survey. Stabile Isotope eines Elements, wie etwa Kohlenstoff, enthalten gleich viele Protonen, unterscheiden sich jedoch in Bezug auf ihre Neutronenzahl und damit ihre Masse.

Zwar zeigen sie keine Unterschiede im Verhalten bei chemischen Reaktionen, wohl aber hinsichtlich ihrer Reaktionsgeschwindigkeiten, so dass bei biogeochemischen Prozessen in der Regel das leichte Isotop Kohlenstoff-12 bevorzugt wird, während das schwere Isotop Kohlenstoff-13 übrig bleibt.

Naturgemäß wollten die Bremer Forscher auch die Frage beantworten, warum sich bei niedrigen Sulfatgehalten leichter Kohlenstoff-12 im Methan anreichert. Als Erklärung führen sie an, dass die biogeochemische Reaktion nahe am energetischen Limit für die Existenz von Leben abläuft. Unter solchen Bedingungen befinden sich alle beteiligten Stoffe bei der Reaktion nahezu im Gleichgewicht. „Aufgrund dessen landet das leichte Kohlenstoff-12 wieder im Methan“, erklärt Gunter Wegener vom Max-Planck-Institut. „Diesen Befund konnten wir mit Hilfe unserer biogeochemischen Modelle untermauern und damit ein global vorhandenes Phänomen erklären“, bestätigt Tobias Goldhammer vom MARUM.

„Unsere Studie ermöglicht neue Einblicke, wie bestimmte Archaeen, die unter großem Energiemangel tief im Meeresboden leben, ihre Stoffwechselvorgänge an diese Bedingungen anpassen. Damit liefert sie Antworten auf eine der zentralen Fragen unseres Projekts“ fügt Kai-Uwe Hinrichs hinzu, der zugleich Leiter des Projekts DARCLIFE ist, das vom Europäischen Forschungsrat ERC gefördert wird. In einem nächsten Schritt wollen die Wissenschaftler klären, ob auch andere wichtige biogeochemische Prozesse im Meeresboden wie etwa die Methanbildung selbst durch solche Reaktionen beeinflusst werden.

Publikation:
Marcos Y. Yoshinaga, Thomas Holler, Tobias Goldhammer, Gunter Wegener, John W. Pohlman, Benjamin Brunner, Marcel M. M. Kuypers, Kai-Uwe Hinrichs, Marcus Elvert: Carbon isotope equilibration during sulphate-limited anaerobic oxidation of methane; in Nature Geoscience Advanced Online Publication.

Siehe: http://www.nature.com/ngeo/journal/vaop/ncurrent/full/ngeo2069.html

Weitere Informationen / Interviewanfragen / Bildmaterial:
Albert Gerdes
MARUM-Öffentlichkeitsarbeit
Universität Bremen
Tel.: 0421 218 65540
Email: agerdes@marum.de
Weitere Informationen:
http://www.nature.com/ngeo/journal/vaop/ncurrent/full/ngeo2069.html
- Online-Publikation der Studie
http://www.marum.de/HinrichsLab_DARCLIFE.html
- Webseite des Forschungsprojekts

Albert Gerdes | idw
Weitere Informationen:
http://www.marum.de

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Wasser - der heimliche Treiber des Kohlenstoffkreislaufs?
17.01.2017 | Max-Planck-Institut für Biogeochemie

nachricht Was ist krebserregend am Erionit?
13.01.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungsnachrichten

Intelligente Haustechnik hört auf „LISTEN“

17.01.2017 | Architektur Bauwesen

Satellitengestützte Lasermesstechnik gegen den Klimawandel

17.01.2017 | Maschinenbau