Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Rätsel um schnelle Klimawechsel während der letzten Eiszeit gelöst?

19.08.2014

Eine Forschergruppe des Alfred-Wegener-Instituts konnte die aus Klimaarchiven bekannten, schnellen Klimawechsel während der letzten Eiszeit erstmals in mehreren Modellläufen nachvollziehen.

Überraschendes Ergebnis der neuen Nature-Veröffentlichung: Vermutlich reichten nur geringe Änderungen im Klimasystem, um abrupte Temperatursprünge auszulösen.


Abbildung A: Die Nordhalbkugel im „Stadial“ (Kaltphasen)

Alfred-Wegener-Institut


Abbildung B: Die Nordhalbkugel im „Interstadial“ (kurze, warme Zwischenphasen während der Eiszeit)

Alfred-Wegener-Institut

Die neue Studie ist bereits im Onlineportal der Fachzeitschrift Nature veröffentlicht und erscheint am kommenden Donnerstag in der Nature-Druckausgabe.

Während der letzten Eiszeit waren weite Teile der Nordhalbkugel mit Inlandeis bedeckt und das auf dem Land gespeicherte Wasser sorgte dafür, dass der Meeresspiegel bei maximaler Vergletscherung um bis zu 120 Meter tiefer lag als heute.

Wie der junge chinesische Wissenschaftler Xu Zhang, Leitautor der Studie und Doktorand am Alfred-Wegener-Institut, erläutert, gab es die rasanten, in der Fachwelt als „Dansgaard-Oeschger-Ereignisse“ (kurz: „DO-Ereignisse“) bezeichneten Klimaschwankungen allerdings nur in einem Zeitraum von 110.000 bis 23.000 Jahren vor unserer Zeit.

„Abrupte Temperatursprünge fanden weder bei den extrem tiefen Meeresspiegeln maximaler Vergletscherung vor etwa 20.000 Jahren statt noch bei hohem Meeresspiegel wie heute. Sie waren auf Zeiten mittleren Eisvolumens und mittlerer Meeresspiegelhöhen begrenzt.“ Die Modellläufe der AWI-Forscher können die aus Eisbohrkernen und Meeressedimenten bekannten Daten der eiszeitlichen Klimageschichte erklären.

So könnten die schnellen Temperaturwechsel bei mittlerer Vereisung der Nordhalbkugel abgelaufen sein (s. Abbildungen auf der Webseite des Alfred-Wegener-Institutes unter: http://bit.ly/1uQmxAe

In der eiszeitlichen Kaltphase („Stadial“) bedeckten riesige Eisschilde den Norden Amerikas und Europas. Starke Nordwestwinde trieben das arktische Meereis bis zur französischen Küste hinunter. Weil der ausgedehnte Eisdeckel auf dem Nordatlantik den Wärmeaustausch zwischen Luft und Meer unterband, fehlte den Meeresströmungen die starke Antriebskraft heutiger Bedingungen. Die Ozeanzirkulation als mächtiges Förderband der Weltmeere war deshalb sehr viel schwächer ausgeprägt als in der Gegenwart und transportierte nur wenig Wärme in den Norden.

In den lang anhaltenden Kaltphasen wuchsen die Eisschilde weiter an. Bei höheren Eisschilden über Nordamerika, wie sie dann in Zeiten mittlerer Meeresspiegelhöhen typisch waren, trennten sich die vorherrschenden Nordwestwinde in zwei Arme auf. Die Hauptwindströmung verlief nördlich des so genannten Laurentidischen Eisschildes und sorgte dafür, dass auch die Meereisgrenze vor der europäischen Küste sich gen Norden verlagerte. Im eisfreien Meer konnte ein Wärmeaustausch zwischen Atmosphäre und Ozean stattfinden.

Gleichzeitig trieb der Südarm der nordwestlichen Winde wärmeres Wasser in die eisfreien Bereiche des Nordost-Atlantiks und verstärkte dadurch den Wärmetransport in den Norden zusätzlich. Die veränderten Bedingungen kurbelten die Ozeanzirkulation an.

Im Ergebnis führte ein hoher Laurentidischer Eisschild über Nordamerika also zu einer verstärkten Ozeanzirkulation und damit zu einem größeren Wärmetransport Richtung Norden. Das Klima auf der Nordhalbkugel wurde innerhalb weniger Jahrzehnte wärmer („Interstadial“), bevor es aufgrund des dann einsetzenden Gletscherrückgangs über Nordamerika und den erneuten Änderungen der Windverhältnisse wieder abzukühlen begann.

„Mit den Simulationen unseres Klimamodells konnten wir zeigen, dass das Klimasystem auch auf kleine Veränderungen mit abrupten Schwankungen reagieren kann,“ erklärt Professor Gerrit Lohmann, Leiter der AWI-Sektion „Dynamik des Paläoklimas“, die Bedeutung der neuen Studie für die aktuelle Klimadiskussion. „Bei mittleren Meeresspiegelhöhen braucht es keine starken Zwänge von außen, zum Beispiel ein dramatisch beschleunigtes Abschmelzen polarer Eisschilde, damit das Klimasystem ins Schwingen gerät und drastische Wechsel erfährt.“

In der Gegenwart ist die Ausdehnung des arktischen Meereises sehr viel geringer als in der letzten Eiszeit. Gleichzeitig verschwand der Laurentidische Eisschild als wichtigster Taktgeber für die eiszeitliche Ozeanzirkulation. Klimawechsel nach dem Muster der letzten Eiszeit sind unter heutigen Bedingungen also nicht zu erwarten.

„Es gibt offenbar Ausgangssituationen, in denen sich das Klimasystem robuster gegen Änderungen zeigt und solche, unter denen es zu starken Schwankungen neigt,“ so das Fazit von Gerrit Lohmann. „Erdgeschichtlich befinden wir uns derzeit in einer stabileren Phase des Klimasystems, in der die Voraussetzungen, unter denen es während der letzten Eiszeit zu schnellen Temperatursprüngen kam, nicht gegeben sind. Das bedeutet allerdings nicht, dass rasante Klimawechsel künftig grundsätzlich ausgeschlossen sind.“

Hinweise für Redaktionen:

Abbildungen zu dieser Pressemitteilung finden Sie auf der Webseite des Alfred-Wegener-Institutes unter: http://bit.ly/1uQmxAe

Ihre wissenschaftlichen Ansprechpartner am Alfred-Wegener-Institut sind:

• Prof. Dr. Gerrit Lohmann, Tel. 0471 4831-1758 (E-Mail: Gerrit.Lohmann@awi.de),
• Dr. Gregor Knorr, Tel. 0471 4831-1769 (E-Mail: Gregor.Knorr@awi.de) und
• Dr. Xu Zhang (englischsprachig), Tel. 0471/4831-1880 (E-Mail: Xu.Zhang@awi.de).

Ihr Ansprechpartner in der Abteilung Kommunikation und Medien ist Sina Löschke, Tel. 0471 4831-2008 (E-Mail: medien@awi.de).

Das Originalpaper ist unter folgendem Titel bereits online erschienen:

Xu Zhang, Gerrit Lohmann, Gregor Knorr, Conor Purcell: Control of rapid glacial climate shifts by variations in intermediate ice-sheet volume, Nature, DOI: 10.1038/nature13592

Folgen Sie dem Alfred-Wegener-Institut auf Twitter (https://twitter.com/AWI_de) und Facebook (https://www.facebook.com/AlfredWegenerInstitut). So erhalten Sie alle aktuellen Nachrichten sowie Informationen zu kleinen Alltagsgeschichten aus dem Institutsleben.

Das Alfred-Wegener-Institut forscht in der Arktis, Antarktis und den Ozeanen der mittleren und hohen Breiten. Es koordiniert die Polarforschung in Deutschland und stellt wichtige Infrastruktur wie den Forschungseisbrecher Polarstern und Stationen in der Arktis und Antarktis für die internationale Wissenschaft zur Verfügung. Das Alfred-Wegener-Institut ist eines der 18 Forschungszentren der Helmholtz-Gemeinschaft, der größten Wissenschaftsorganisation Deutschlands.

Weitere Informationen:

http://bit.ly/1uQmxAe
http://www.nature.com/nature/journal/vaop/ncurrent/full/nature13592.html

Sina Löschke | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Der Salzwasser-Wächter auf der Darßer Schwelle
19.09.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie