Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Rätsel um den mikrobiellen Butanabbau geknackt

18.10.2016

Forscher aus dem Max-Planck-Institut für Marine Mikrobiologie in Bremen und Kollegen am Helmholtz-Zentrum für Umweltforschung (UFZ) in Leipzig haben einen neuen Weg entdeckt, wie mikrobielle Gemeinschaften den chemisch trägen Kohlenwasserstoff Butan auch ohne Sauerstoff zur Energiegewinnung nutzen können. In Proben aus dem Guaymas-Becken im Golf von Kalifornien machten sie Konsortien aus bisher unbekannten Archaeen und Bakterien ausfindig, die Butan über neue Stoffwechselwege fressen. Veröffentlicht sind die Forschungsergebnisse jetzt im Fachjournal Nature.

Gasförmige Kohlenwasserstoffe im Meeresboden


Spezifische Färbung der Zellen in einem Butan-oxidierenden Konsortiums. Rote Färbung zeigt die Archaeen (Candidatus Syntrophoarcheum butanivorans) grüne Färbung die Bakterien (Hotseep-1) an.

: Rafael Laso-Pèrez, MPI für Marine Mikrobiologie und Victoria Orphan, Caltech, USA


Schema der Butanoxidation in Archaee mit dem Namen Candidatus Syntrophoarchaeum butanivorans und der gekoppelten Sulfatreduktion im Partnerbakterium HotSeep-1. Butan bindet in der MCR ans Coenzym M

Max-Planck-Institut für Marine Mikrobiologie

Man braucht nur einen gasförmigen Kohlenwasserstoff, Sauerstoff und eine Zündquelle: Ob im Gasherd, im Feuerzeug, oder im Campingkocher – Erdgas ist dank seiner hohen Energiedichte ein begehrter Energieträger. Erdgas ist im Meeresboden häufig anzutreffen. In den oberen Schichten des Meeresbodens entsteht vorrangig Methan, dies als Produkt sogenannter methanogener Archaeen.

Die wirtschaftlich interessanten Gasvorkommen befinden sich jedoch in viel tieferen Schichten des Meeresbodens. Dort wird organisches Material – also Reste abgestorbener Pflanzen, Tiere und Mikroorganismen – unter hohen Temperaturen rein chemisch in gasförmige Kohlenwasserstoffe und Erdöl umgewandelt. Dieses Erdgas enthält auch einen großen Anteil kurzkettiger Kohlenwasserstoffe wie Propan und Butan, welche unter leichtem Druck schon flüssig werden.

Wenn dieses Erdgas im Meeresboden in belebte Sedimentschichten aufsteigt, können es Mikroorganismen als Energiequelle nutzen. Direkt an der Oberfläche der Sedimente verbrauchen Bakterien es mit dem chemisch sehr aktiven Sauerstoff. Ist kein Sauerstoff mehr vorhanden, finden andere Mikroorganismen alternative Wege um das Erdgas für sich zu nutzen.

Wie Mikroorganismen ohne Sauerstoff Erdgas als Energiequelle nutzen können

Unterschiedliche Mikroorganismen haben sich auf die Nutzung verschiedener Kohlenwasserstoffe spezialisiert. Die Anaerobe Oxidation von Methan (AOM) ist seit einigen Jahren bekannt. Methan wird ohne Sauerstoff in Konsortien von Archaeen und Bakterien abgebaut.

Die Methan oxidierenden (methanotrophen) Archaeen nutzen dabei dieselben Enzyme wie ihre Methan erzeugenden Verwandten, allerdings in umgekehrter Richtung. Das molekulare Stemmeisen um Methan zu aktivieren, trägt den Namen Methyl-Coenzym-M-Reduktase (MCR), welches die ANME Archaeen in großen Mengen herstellen. In diesem Enzym wird das Methanmolekül mit der Schwefelverbindung Coenzym M verknüpft und in weiteren Reaktionen komplett zu Kohlendioxid (CO2) oxidiert.

Anstelle Sauerstoffs dient als Oxidationsmittel Sulfat, das in den Sulfat reduzierenden Partnerbakterien zu Schwefelwasserstoff umgewandelt wird. Als Abbauer kurzkettiger Kohlenwasserstoffe mit drei oder mehr Kohlenstoffatomen sind bisher nur Bakterien beschrieben worden, die ihr Substrat komplett oxidieren und selbständig an die Reduktion von Sulfat koppeln.

Der neue Abbauweg für Butan basiert auf den Prinzipen des Methanabbaus

Nun haben Forscher in Sedimenten von den heißen Quellen des Guaymas Beckens neue Konsortien aus Archaeen und Partnerbakterien entdeckt, die mit Butan als einziger Nahrungsquelle angereichert werden konnten und dabei Sulfid produzieren. In dem Genom der Archaeen fanden sie nicht die bekannten Gensequenzen des anaeroben Butanabbaus. „Stattdessen fanden wir verschiedene Gensequenzen, die entfernt mit den MCR-Genen der methanogenen und methanotrophen Archaeen verwandt sind. Konnten die in diesen Genen verschlüsselten Enzyme wirklich auch das Butan angreifen? Und welche weiteren Schritte wären danach für den kompletten Abbau von Butan notwendig?“ fragte sich Rafael Laso-Pérez, Doktorand am Max-Planck-Institut und Erstautor der jetzt in Nature veröffentlichten Studie.

Einen entscheidenden Beweis für diese ungewöhnliche chemische Aktivierung wurde über den Nachweis des chemischen Produkts geliefert: Sollte die Butan-Aktivierung ähnlich dem anaeroben Methanabbau verlaufen, dann müsste das Produkt Butyl-Coenzym M nachweisbar sein. Dies gelang UFZ-Mikrobiologe Dr. Florin Musat und seinen Kolleginnen und Kollegen mithilfe eines ultra-hochauflösenden Massenspektrometers am UFZ in Leipzig.

„Methyl-Coenzym-M-Reduktasen wurden bisher als typische Vertreter Methan-spezifischer Enzyme bekannt. Mit dem Nachweis von Butyl-Coenzym M konnten wir klar zeigen, dass spezielle Methyl-Coenzym-M-Reduktasen nicht nur Methan sondern auch größere Kohlenwasserstoffe aktivieren“, erläutert Florin Musat.

Auch der weitere Abbau von Butyl-Coenzym M konnte aufgeklärt werden. Er verläuft teils über bekannte Mechanismen der Methanogenese und der Methanoxidation. Zusätzlich konnten Abbauwege für Buttersäure (Butyrat) und Essigsäure identifiziert werden. Gemeinsam ermöglichen diese Abbauwege die komplette Oxidation von Butan in den Archaeen. „Dabei wurden viele Lösungen von anderen Organismen implementiert. Man spricht hier von einem horizontalen Gentransfer“ erläutert Dr. Gunter Wegener, Initiator der Studie: „Es war ein langer Weg zur Lösung dieses Rätsels und viele Forscher waren daran beteiligt.“

Wie ihre Methan oxidierenden Verwandten sind diese Butanoxidierer allerdings nicht in der Lage, die bei der Oxidation ihres Substrats freiwerdenden Elektronen selbst auf einen Elektronenakzeptor zu übertragen. Genau wie in AOM-Konsortien sind sie dabei auf Partnerbakterien angewiesen.
„Auf elektronenmikroskopischen Aufnahmen der Butankultur sind winzige Proteinverbindung zwischen Archaeen und Bakterien zu sehen. Durch diese Mikro-Drähte fließen die Elektronen.

Aufgrund seiner Eigenschaften als mit einem Partnerbakterium lebenden Butanfresser haben wir den Archaeen den Namen Syntrophoarchaeum butanivorans gegeben. Ein syntropher Austausch von Elektronen über Proteinverbindungen ist damit in einem weiteren Organismus gezeigt“, erläutert Dr. Gunter Wegener und ergänzt:„Wir blicken bei diesen Konsortien vermutlich tief in die Vergangenheit, denn eine Aktivierung von Butan über den Coenzym M-Mechanismus und die Aufgabenteilung in zwei Organismen scheint die ursprüngliche Lösung der Natur zu sein“.

Offene Fragen bleiben
Wo auf der Erde kommen diese gerade entdeckten Konsortien noch vor? Warum und unter welchen Bedingungen setzt sich diese Aufgabenteilung in Form von Konsortien zweier Organismen gegenüber einer Kopplung in einer Zelle durch? Gibt es andere Methyl-Coenzym-M-Reduktasen, die höherkettige Alkane aktivieren können? Diesen spannenden Fragen werden sich die Forscher am Max-Planck-Institut für Marine Mikrobiologie und dem Helmholtz-Zentrum für Umweltforschung (UFZ) zukünftig widmen.


Rückfragen an
Rafael Laso-Perez, Max-Planck-Institut für Marine Mikrobiologie,
D-28359 Bremen, Telefon: 0421 2028 867, rlperez@mpi-bremen.de
Dr. Gunter Wegener, Max-Planck-Institut für Marine Mikrobiologie,
D-28359 Bremen, Telefon: 0421 2028 867, gwegener@mpi-bremen.de
Dr. Florin Musat, Helmholtz-Zentrum für Umweltforschung (UFZ) Leipzig,
D-04318 Leipzig, Telefon: 0341 235 1005, florin.musat@ufz.de
oder wenden Sie sich an die Presseabteilung des Max-Planck-instituts
Dr. Manfred Schlösser und Dr. Fanni Aspetsberger
presse@mpi-bremen.de 0421 2028 704

Originalveröffentlichung
Thermophilic archaea activate butane via alkyl-CoM formation. Rafael Laso-Pérez, Gunter Wegener, Katrin Knittel, Friedrich Widdel, Katie J. Harding , Viola Krukenberg, Dimitri V. Meier, Michael Richter, Halina E. Tegetmeyer, Dietmar Riedel, Hans-Hermann Richnow, Lorenz Adrian, Thorsten Reemtsma, Oliver Lechtenfeld, Florin Musat. Nature, 2016 doi: 10.1038/nature20152

Beteiligte Institute
Max-Planck-Institut für Marine Mikrobiologie, Bremen
MARUM, Zentrum für Marine Umweltwissenschaften, Universität Bremen
Max-Planck-Institut für Biophysikalische Chemie, Göttingen, Germany.
Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven
Centrum für Biotechnologie, Universität Bielefeld
Helmhotz Centre for Environmental Research – UFZ, Leipzig

Weitere Informationen:

http://www.mpi-bremen.de Webseite des Max-Planck-Instituts für Marine Mikrobiologie

Dr. Manfred Schloesser | Max-Planck-Institut für marine Mikrobiologie

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Von der Bottnischen See bis ins Kattegat – Der Klimageschichte der Ostsee auf der Spur
28.03.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Einfluss der Sonne auf den Klimawandel erstmals beziffert
27.03.2017 | Schweizerischer Nationalfonds SNF

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten