Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Rätsel im Bauch der Erde bleibt ungelöst

04.12.2009
Professor Irifune forschte mit Bayreuther Wissenschaftlern über Bindungen des Eisens im unteren Erdmantel

Gemeinsame Forschungsarbeiten Bayreuther und japanischer Wissenschaftler widerlegen die Annahme, dass Elektronenübergänge im Eisen und damit verbundene Elementverteilung für die abrupten Diskontinuitäten im unteren Erdmantel verantwortlich sind. Die Ursache für die Diskontinuitäten bleibt damit weiterhin ein Rätsel. Diese Entdeckung haben die Forscher jetzt im Wissenschafts-Journal Science veröffentlicht.

Professor Tetsuo Irifune von der Ehime-Universität in Matsuyama/Japan (Bild) ist im Rahmen eines Forschungsaufenthalts am Bayerischen Geoinstitut dieser Fragestellung nachgegangen. Ermöglicht wurden die Forschungsarbeiten durch die Alexander von Humboldt-Stiftung, die Irifune mit dem Humboldt-Preis auszeichnete. Irifune wendete eine neue Hochdruck-Methodik an, bei der gesinterte Diamanten als Druckstempel in einer großvolumigen Presse eingesetzt wurden. Damit stieß er in Druckbereiche bis 47 GPa (470.000- facher Atmosphärendruck) vor. Dies entspricht den Bedingungen, die in etwa in der Mitte des unteren Erdmantels vorliegen. Irifune und seine Kollegen haben gezeigt, dass Eisen bei steigendem Druck zuerst Silikat-Perowskit bevorzugt, sich bei höheren Drücken jedoch überwiegend an Ferro-Periklas anreichert. Dieser Wechsel im Verteilungsverhalten wird durch Übergänge in der Elektronenstruktur verursacht. Derartige Elektronenübergänge sind in früheren Untersuchungen als Ursache für die kleineren Diskontinuitäten im unteren Erdmantel angeführt worden.

Um die Auswirkung der Eisenverteilung auf Dichteänderungen im unteren Mantel zu erfassen, bestimmten Irifune und seine Bayreuther Kollegen das Volumen von jedem untersuchten Mineral unter den Druck- und Temperaturbedingungen des unteren Erdmantels. Überraschenderweise konnten die Forscher keine, den Wechseln im Elektronenzustand entsprechenden, abrupten Dichteveränderungen registrieren, was sie auf Kompensationseffekte innerhalb der Mineralgemische im unteren Mantel zurückführen. Somit müssen Geophysiker nach anderen möglichen Ursachen für kleine Diskontinuitäten im unteren Erdmantel suchen.

Die erzielten Ergebnisse gelten für den oberen Bereich des unteren Mantels mit den Druck- und Temperaturbedingungen, die experimentell erreicht werden konnten. Es bleibt die Frage offen, wie sich das Eisen in noch größerer Tiefe in der Erde verhält. Weitere Untersuchungen auf diesem Gebiet wird das neue Kooperationsabkommen zwischen dem Bayerischen Geoinstitut und dem Geodynamic Research Center der Ehime-Universität ermöglichen, das den gegenseitigen Austausch von Studenten und Wissenschaftlern vorsieht, um gemeinsame Forschungsprojekte verstärkt durchzuführen.

Hintergrund:
Das Erdinnere ist zum weitaus größten Teil für Untersuchungen nicht direkt zugänglich und nur wenige seiner physikalischen Eigenschaften lassen sich unmittelbar messen. Eine dieser Eigenschaften ist die Dichte, die Forscher aus der Analyse von Erdbebenwellen (Seismik) erhalten. Da sich die Dichte an Grenzschichten (so genannte Diskontinuitäten) abrupt ändert, liefern Messungen von Erdbebenwellengeschwindigkeiten wichtige Erkenntnisse über den Schalenaufbau des Erdinnern. So liegen im unteren Erdmantel, der mehr als 50 Prozent des gesamten Erdvolumens ausmacht, kleinere Diskontinuitäten vor, die aufgrund von geophysikalischen Messdaten nicht erklärt werden können. Um die Ursachen für Diskontinuitäten zu ergründen, werden die Eigenschaften der betreffenden Minerale des Erdmantels im Labor unter den Druck- und Temperaturbedingungen des Erdinneren bestimmt. Die Resultate können dann mit den geophysikalischen Daten verglichen werden, um die Gültigkeit aufgestellter Modelle zu überprüfen. Eisen ist das schwerste der in der Erde häufig vorhandenen Elemente. Jeder Prozess, der sich auf die Eisenverteilung zwischen den Mineralen des Erdmantels auswirkt, kann auch Dichteänderungen im Erdkörper verursachen. Untersuchungen zur Eisenverteilung im unteren Erdmantel haben sich auf die zwei hier dominant auftretenden Minerale Eisen-Magnesium-Silikat-Perowskit („Silikat- Perowskit“) und Eisen-Magnesium-Oxid („Ferro-Periklas“) konzentriert. Vorausgegangene Versuche haben aber keine eindeutigen Hinweise auf die Verteilung von Eisen zwischen Ferro-Periklas und Silikat-Perowskit geliefert, so dass der Einfluss der Elementverteilung auf die exakte Dichte und Dichtevariationen im unteren Erdmantel nicht geklärt werden konnte.
Kontakt:
Dr. Catherine McCammon
Telefon: 0921/55 3709
E-mail: catherine.mccammon@uni-bayreuth.de

Frank Schmälzle | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Winzige Eisverluste an den Rändern der Antarktis können Eisverluste in weiter Ferne beschleunigen
11.12.2017 | Potsdam-Institut für Klimafolgenforschung

nachricht Was macht Korallen krank?
08.12.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mit Quantenmechanik zu neuen Solarzellen: Forschungspreis für Bayreuther Physikerin

12.12.2017 | Förderungen Preise

Stottern: Stoppsignale im Gehirn verhindern flüssiges Sprechen

12.12.2017 | Biowissenschaften Chemie

E-Mobilität: Neues Hybridspeicherkonzept soll Reichweite und Leistung erhöhen

12.12.2017 | Energie und Elektrotechnik