Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Radar-Satellitenmission TanDEM-X: wie hoch ist die Erdoberfläche?

22.06.2010
Vom Weltraumbahnhof Baikonur (Kasachstan) wurde am 21. Juni um 04:14:02 Uhr MESZ der deutsche Erdbeobachtungssatellit TanDEM-X auf seine Umlaufbahn in 514 Kilometern Höhe gebracht. Mit an Bord: das vom Deutschen GeoForschungsZentrum GFZ entwickelte Navigationsinstrument TOR. TanDEM-X soll Daten der Höhe der Erdoberfläche mit bisher unerreichter Auflösung erfassen. Die technische Grundlage dafür ist das TOR-Instrument, ohne welches die Mission nicht möglich wäre.

Um die angetrebte Genauigkeit zu erreichen, tasten die beiden nahe beieinander fliegenden Satelliten TerraSAR-X und TanDEM-X mit Radar-Verfahren die Erdoberfläche ab. Kennt man den Abstand der beiden Satelliten voneinander, kann aus dieser Dreieckskonstellation die Höhenerhebung der Erdoberfläche bestimmt werden. Daher ist die Bestimmung des Abstands der Satelliten von entscheidender Bedeutung. Dazu dient das TOR-Instrument.

Bei der Erstellung der Höhenmodelle (Digital Elevation Models, DEM) mit der angestrebten hohen Genauigkeit ist die ständige und präzise Bestimmung dieses Abstands, der Basislinie, die entscheidende Grundlage. Als Daumenregel gilt, dass ein Millimeter-Fehler auf der Basislinie einen Fehler im Meterbereich nach sich zieht. Das TOR-Instrument fliegt auf beiden Satelliten.

Aus den GPS-Messsignalen des Instruments kann man die Basislinie hochgenau ableiten. Das GFZ bestimmt aber nicht nur die Basislinie, sondern nutzt das TOR-Instrument auch zur Erfassung global verteilter Vertikalprofile von atmosphärischen Zustandsgrößen wie Temperatur und Wasserdampfgehalt und zur Überwachung des Zustands der Ionosphäre. Zudem sollen die aus TOR abgeleiteten Bahninformationen zu geowissenschaftliche Aufgaben mit Hilfe von SAR-Daten dienen. Dieses Haupt-Messverfahren der TerraSAR-X- und TanDEM-X-Satelliten wird für ökologische, geophysikalische und hydrologische Untersuchungen genutzt. Insbesondere Hangrutschungen, Bodensenkung in bebauten Gebieten, Eisoberflächen und Gletscherabnahme, Oberflächenwasser und erdbebenrelevante seismische Deformationen können damit analysiert werden.

Das TOR-Instrument besteht aus einem Zweifrequenz-GPS-Empfänger und einem Laserreflektor für die Bahnvermessung mittels "Satellite Laser Ranging" (SLR). Der GPS-Empfänger ist eine Entwicklung des US Jet Propulsion Laboratory, während der SLR-Reflektor eine hauseigene Entwicklung des GFZ ist und bereits auf den Geoforschungsatelliten CHAMP und GRACE fliegt. Das TOR-Paket ist auf fünf Satelliten im Einsatz; sein GPS-Empfänger liefert wetterunabhängig kontinuierlich Messungen im 5-Sekundentakt. Die grosse Menge der GPS-Daten und ihre hohe Genauigkeit ermöglichen die kontinuierliche und millimetergenaue Ermittlung der Basislinie und die zentimetergenaue Positionsbestimmung der Satelliten in dichter Abtastung. Die Laserimpulse der 25 weltweit verteilten Bodenstationen dienen zur Kalibrierung der GPS-Messungen, eine dieser Stationen betreibt das GFZ in Potsdam.

Franz Ossing | idw
Weitere Informationen:
http://www.gfz-potsdam.de/

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Nährstoffhaushalt einer neuentdeckten “Todeszone” im Indischen Ozean auf der Kippe
06.12.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Wichtiger Prozess für Wolkenbildung aus Gasen entschlüsselt
05.12.2016 | Leibniz-Institut für Troposphärenforschung e. V.

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Was nach der Befruchtung im Zellkern passiert

06.12.2016 | Biowissenschaften Chemie

Tempo-Daten für das „Navi“ im Kopf

06.12.2016 | Medizin Gesundheit

Patienten-Monitoring in der eigenen Wohnung − Sensorenanzug für Schlaganfallpatienten

06.12.2016 | Medizintechnik