Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Plattentektonik ohne Ruckeln

30.06.2016

AWI-Forscher zeichnen erstmals detailliert Erdbeben an ultralangsamen mittelozeanischen Rücken auf

Die Erdbebenverteilung an ultralangsamen mittelozeanischen Rücken unterscheidet sich grundlegend von der anderer Spreizungszonen. Bis in 15 Kilometer Tiefe zirkulierendes Wasser führt hier zur Bildung eines Gesteins, welches wie Schmierseife wirkt.


Aussetzen OBS

Foto: F. Mehrtens / Alfred-Wegener-Institut

So driften die Kontinentalplatten an ultralangsamen mittelozeanischen Rücken ohne zu ruckeln, während dieser Vorgang in anderen Regionen zu vielen kleinen Erdbeben führt. Das berichten Geophysiker vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) am Mittwoch, 29. Juni 2016 vorab online in der Fachzeitschrift Nature.

Wo Kontinentalplatten aufeinandertreffen, türmen sich Gebirge wie der Himalaja auf. Genauso spektakulär, aber in den Tiefen der Ozeane verborgen, sind die Gebiete, wo die Kontinente auseinanderdriften: die mittelozeanischen Rücken. Am Meeresgrund wird wie am Förderband neuer Ozeanboden (Ozeanlithosphäre) gebildet, indem Magma aus größeren Tiefen nach oben strömt und die entstehende Lücke zwischen den Lithosphärenplatten füllt. Bei diesem Spreizungsprozess ruckelt es und kleine Erdbeben entstehen „am laufenden Band“.

Diese Erdbeben verraten viel über die Entstehung und Struktur neuer Ozeanlithosphäre. Bei sogenannten ultralangsamen Rücken driften die Lithosphärenplatten so langsam auseinander, dass das Förderband ruckelt und stottert und temperaturbedingt nicht genug Schmelze da ist, um die Lücke zwischen den Platten zu füllen. So wird der Erdmantel an vielen Stellen direkt an den Meeresboden gefördert, ohne dass Erdkruste entsteht. An anderen Stellen entlang dieser Rücken findet man wiederum riesige Vulkane.

Ultralangsame Rücken befinden sich unter dem Meereis der Arktis und südlich von Afrika am Südwestindischen Rücken in den berüchtigten Seegebieten der „Roaring Fourties“ und „Furious Fifties“. Weil diese Seegebiete so schwierig zu erreichen sind, hat noch niemand Erdbeben vor Ort gemessen. So war bis heute über Struktur und Entstehung von gut 20 Prozent des globalen Meeresbodens wenig bekannt.

Mit dem Forschungsschiff Polarstern als zuverlässigem Arbeitstier auch in schwerer See haben es Wissenschaftler um Dr. Vera Schlindwein vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) nun erstmals gewagt, ein Netzwerk von Ozeanbodenseismometern (OBS) am Südwestindischen Rücken in den „Furious Fifties“ auszubringen und nach einem Jahr vor Ort wieder zu bergen.

Ein zweites Netzwerk stand zeitgleich an einem Vulkan in gemäßigteren Breiten des Südwestindischen Rückens. „Belohnt wurden unsere Mühe und unser Risiko nun mit einem einmaligen Erdbebendatensatz, der zum ersten Mal tiefe Einblicke in die Funktionsweise der Ozeanbodenbildung bei sehr langsamen Spreizungsraten gibt“, berichtet AWI-Geophysikerin Vera Schlindwein.

Ihre Ergebnisse stellen die bisherigen wissenschaftlichen Erkenntnisse zur Funktionsweise ultralangsamer mittelozeanischer Rücken auf den Kopf: Schlindwein und ihr Doktorand Florian Schmid fanden heraus, dass Wasser bis in 15 Kilometern Tiefe der jungen Ozeanlithosphäre - also der Erdkruste und des äußeren Teils des Erdmantels - zirkuliert. Kommt dieses Wasser mit Erdmantelgestein in Kontakt, so bildet sich ein grünliches Gestein namens Serpentinit.

Schon geringe Mengen von zehn Prozent Serpentinit in Erdmantelgesteinen reichen aus, damit sich das Gestein ohne jegliche Erdbeben wie auf Schmierseifenbahnen bewegen kann. Solche aseismischen Gebiete, scharf begrenzt von vielen kleinen Erdbeben, entdeckten die Forscher in ihren Daten.

Bisher glaubte man, dass Serpentinit sich nur in der Nähe von Störungszonen und nahe der Oberfläche bildet. „Unsere Daten legen nun nahe, dass Wasser durch ausgedehnte Bereiche der jungen Ozeanlithosphäre zirkuliert und dabei im Gestein gebunden wird. Wärme und z.B. Methan werden freigesetzt und zwar in Dimensionen, die man vorher nicht abgesehen hat“, sagt Vera Schlindwein.

Mit den Ozeanbodenseismometern konnten die AWI-Geophysiker die aktiven Spreizungsprozesse nun direkt beobachten - und zwar vergleichend an vulkanischen und nicht vulkanischen Rückenabschnitten. „Wir können anhand der Verteilung der Erdbeben zum ersten Mal bei der Entstehung neuer Lithosphäre bei ganz langsamen Spreizungsraten quasi zusehen. Einen solchen Datensatz hat es von den ultralangsamen Rücken noch überhaupt nicht gegeben“, berichtet Vera Schlindwein.

„Uns hat es anfangs sehr überrascht, dass Erdbeben in den Gebieten ohne Erdkruste bis in 15 Kilometer Tiefe völlig fehlten, obwohl OBS direkt darüber standen. In größeren Tiefen sowie in vulkanischen Gebieten nebenan hingegen, wo Basalt am Meeresboden zu finden ist und eine dünne Erdkruste existiert, bebte es munter in allen Tiefenbereichen“, beschreibt Vera Schlindwein den ersten Blick in die Daten, nachdem sie mit der Polarstern die OBS im Jahr 2014 wieder geborgen hatte.

Die Ergebnisse beeinflussen auch andere Disziplinen der Meeresforschung: Geologen denken über andere Deformationsmechanismen der jungen Ozeanlithosphäre nach. Denn Gestein, das sich wie Schmierseife verhält, erlaubt ganz andere Deformation, die vielleicht Grundlage des sogenannten „smooth seafloor“ sein könnte, der nur von ultralangsamen Rücken bekannt ist. Ozeanographen interessieren sich für Wärmeeintrag und Spurengase in der Wassersäule in solchen Gebieten, die bisher für nicht vulkanisch und „kalt“ gehalten wurden. Für Biologen ist der in weiten Bereichen zu erwartende erhöhte Ausstrom von Methan und Sulfiden am Meeresboden von Interesse, der eine wichtige Lebensgrundlage für Tiefseeorganismen bildet.

Originalpublikation:
Vera Schlindwein, Florian Schmid: Mid-ocean ridge seismicity reveals extreme types of ocean lithosphere. DOI: 10.1038/nature18277


Hinweise für Redaktionen:
Druckbare Bilder finden Sie bis zum Ablauf der Sperrfirst in unserer Mediathek unter:
http://multimedia.awi.de/medien/pincollection.jspx?collectionName=%7B3906d4a3-b1...

Ein Video vom Aussetzen der OBS gibt es hier: http://www.youtube.com/watch?v=1jb_DBCEyVM&feature=youtu.be

Ihre Ansprechpartnerinnen sind Dr. Vera Schlindwein (Tel.: 0471 4831-1943; E-Mail: Vera.Schlindwein(at)awi.de) sowie in der Pressestelle des Alfred-Wegener-Instituts Dr. Folke Mehrtens (Tel.: 0471 4831-2007; E-Mail: Folke.Mehrtens(at)awi.de).

Das Alfred-Wegener-Institut forscht in der Arktis, Antarktis und den Ozeanen der mittleren und hohen Breiten. Es koordiniert die Polarforschung in Deutschland und stellt wichtige Infrastruktur wie den Forschungseisbrecher Polarstern und Stationen in der Arktis und Antarktis für die internationale Wissenschaft zur Verfügung. Das Alfred-Wegener-Institut ist eines der 18 Forschungszentren der Helmholtz-Gemeinschaft, der größten Wissenschaftsorganisation Deutschlands.

Ralf Röchert | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Expedition ans Ende der Welt
29.11.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lakkolithe können auch während eines Vulkanausbruchs entstehen
24.11.2016 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie