Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Öl- und Gasbohrungen als starke Quelle von Treibhausgasen

28.08.2017

Neue Studie belegt Methan-Leckagen rund um Bohrlöcher in der Nordsee

Bohrlöcher in der Nordsee könnten eine deutlich größere Quelle von Methan, einem starken Treibhausgas, sein als bisher angenommen. Das zeigt eine Studie, die Forschende des GEOMAR Helmholtz-Zentrums für Ozeanforschung Kiel jetzt in der internationalen Fachzeitschrift Environmental Science & Technology veröffentlicht haben. Demnach treten aus den die Bohrungen umgebenden Sedimenten große Mengen Methan aus, vermutlich über lange Zeiträume.


Methangasaustritt in der Nähe eines Bohrlochs.

Foto: ROV KIEL6000, GEOMAR


Ölförderplattform in der Nordsee.

Foto: L. Vielstädte, GEOMAR

Die Bilder gingen um die Welt. Im April 2010 entwichen aus einem Bohrloch unterhalb der Plattform Deepwater Horizon im Golf von Mexiko plötzlich große Mengen an Methangas. Dieser „Blow-Out“ führte zu einer Explosion, bei der elf Menschen starben. Wochenlang strömte danach Öl aus dem beschädigten Bohrloch ins Meer. Glücklicherweise sind solche katastrophalen „Blow-Outs“ eher selten. Kontinuierliche Austritte geringerer Gasmengen aus aktiven oder alten, verlassenen Bohrlöchern sind dagegen häufiger.

Ein Forscherteam des GEOMAR Helmholtz-Zentrums für Ozeanforschung Kiel und der Universität Basel veröffentlicht jetzt in der internationalen Fachzeitschrift Environmental Science & Technology neue Daten, wonach Gasaustritte, die entlang der Außenseite von Bohrlöchern entweichen, ein deutlich größeres Problem darstellen könnten als bisher angenommen.

Diese Art der Leckage wird derzeit weder von Betreibern noch Regulatoren betrachtet, könnte aber ebenso bedeutsam sein, wie die Austritte aus beschädigten Bohrlöchern selbst, welche meist schnell erkannt und repariert werden. „Wir haben hochgerechnet, dass Leckagen rund um Bohrlöcher eine der Hauptquellen für das Methan in der Nordsee sein könnten“, sagt Dr. Lisa Vielstädte vom GEOMAR, die Hauptautorin der Studie.

Bei mehreren Expeditionen zu Öl- und Gaslagerstätten in der zentralen Nordsee in den Jahren 2012 und 2013 haben die Forschenden rund um verlassene Bohrlöcher Methanaustritte entdeckt. Das Gas stammt aus flachen Gastaschen, die weniger als 1000 Meter unter dem Meeresboden liegen. Bei Bohrungen zu tiefer liegenden, wirtschaftlich interessanten Lagerstätten werden sie einfach durchstoßen.

„Diese Gastaschen sind meistens auch keine Gefahr für die Bohrungen an sich. Aber offenbar sorgt die Störung des Untergrundes dafür, dass rund um das Bohrloch Gas zum Meeresboden aufsteigen kann“, erklärt Dr. Matthias Haeckel vom GEOMAR, Initiator der Studie.

Seismische Daten vom Untergrund der Nordsee verrieten den an der Studie Beteiligten, dass rund ein Drittel der Bohrlöcher durch flache Gastaschen gebohrt wurden und somit die Bedingungen erfüllen, um Methanquellen in der Umgebung zu erzeugen. „Bei mehr als 11.000 Bohrungen in der Nordsee ergibt das eine entsprechend große Menge an potenziellen Methanquellen“ sagt Dr. Vielstädte, die derzeit an der Universität Stanford in Kalifornien forscht.

Hochrechnungen des Teams ergaben, dass entlang der existierenden Bohrlöcher zwischen 3000 und 17.000 Tonnen Methan pro Jahr aus dem Meeresboden austreten. „Das wäre ein signifikanter Anteil am gesamten Methanbudget der Nordsee“, betont Dr. Haeckel.

Im Meerwasser wird Methan normalerweise mikrobiell abgebaut, was in der näheren Umgebung zu einer lokalen Versauerung führen kann. In der Nordsee liegt etwa die Hälfte der Bohrlöcher in so geringen Wassertiefen, dass das am Meeresboden austretende Methan die Atmosphäre erreichen kann. Dort entfaltet es als Treibhausgas eine deutlich größere Wirkung als Kohlendioxid.

„Erdgas, also Methan, wird oft als der fossile Brennstoff gepriesen, der für den Übergang von Kohlenutzung zu regenerativen Energien am besten geeignet ist. Wenn Bohrungen nach Gas aber global zu so großen Methanemissionen in die Atmosphäre führen, müssen wir das Treibhausbudget von Erdgas neu überdenken“, resümiert Dr. Haeckel.

Um den menschlichen Einfluss auf das Methanbudget der Nordsee noch genauer beziffern zu können, wird das Kieler Forschungsschiff POSEIDON im Oktober weitere Gasquellen im Umfeld von Bohrlöchern in der Nordsee untersuchen.

Originalarbeit:
Vielstädte, L., M. Haeckel, J. Karstens, P. Linke, M. Schmidt, L. Steinle, K. Wallmann, 2017: Shallow Gas Migration along Hydrocarbon Wells – An Unconsidered, Anthropogenic Source of Biogenic Methane in the North Sea. Environ. Sci. Technol., http://dx.doi.org/10.1021/acs.est.7b02732

Hinweis:
Die Studie wurde gefördert vom EUROFLEETS-Programm der Europäischen Union, vom Projekt ECO2 und vom Exzellenzcluster „Ozean der Zukunft“.

Kontakt:
Dr. Andreas Villwock (GEOMAR, Kommunikation & Medien), Tel.: 0431 600-2802, presse@geomar.de

Dr. Andreas Villwock | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.geomar.de/

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Der Salzwasser-Wächter auf der Darßer Schwelle
19.09.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Zeppelin, Drohnen und Forschungsschiffe untersuchen Wattenmeer und Elbe
19.09.2017 | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

Zwei Grad wärmer – und dann?

19.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungsnachrichten

Zentraler Schalter der Immunabwehr gefunden

19.09.2017 | Biowissenschaften Chemie

Neue Materialchemie für Hochleistungsbatterien

19.09.2017 | Biowissenschaften Chemie