Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Ökosystem im Meeresboden

21.08.2008
Aktueller Nature-Artikel zum Leben in den Tiefen des Meeresbodens

In der kommenden Ausgabe des Wissenschaftsmagazins Nature (21. August) präsentiert ein bremisch-japanisches Forscherteam neue Erkenntnisse zum mikrobiellen Leben in den Tiefen des Meeresbodens. Demnach existieren dort - umgerechnet in Kohlenstoff - etwa 90 Milliarden Tonnen lebende Materie; zumeist in Form von Archaeen.

Das entspricht etwa der Biomasse aller tropischer Regenwälder weltweit! Die bremisch-japanische Studie wird von einem längeren Kommentar der Harvard-Professorin Ann Pearson in der gleichen Nature-Ausgabe flankiert. Die Geochemikerin ordnet das ihrer Meinung nach "faszinierende neue Bild vom Leben im Meeresboden" historisch ein und weist zugleich auf offene Fragen hin. Zum Beispiel erörtert sie, warum es so schwierig ist, mikrobielles Leben im tiefen Untergrund zu erfassen.

Seit der legendären Expedition des britischen Forschungsschiffs CHALLENGER vor gut 130 Jahren ist bekannt, dass Leben am Meeresboden existiert. Auf erste Anzeichen für mikrobielles Leben im Meeresboden stießen Wissenschaftler laut Prof. Pearson erst ab 1959. Danach dauerte es noch einmal 35 Jahre, ehe 1994 erstmals Mikroben in den Ablagerungen des pazifischen Ozeans beschrieben wurden. Damit war die Wissenschaft von der "tiefen Biosphäre" geboren, die seitdem einen rasanten Aufschwung genommen hat.

Die in der aktuellen Nature-Studie untersuchten Sedimentproben aus mehreren Hundert Metern Tiefe stammen aus dem Atlantik, dem Pazifik und dem Schwarzen Meer. Sie wurden u.a. im Rahmen des Integrierten Ozeanbohr-Programms IODP erbohrt. In der bereits kürzlich vorab online von Nature publizierten Arbeit legt das Team um Dr. Julius Lipp und Prof. Kai-Uwe Hinrichs dar, dass, anders als bislang angenommen, nicht Bakterien sondern Archaeen das Leben das Ökosystem der tiefen Biosphäre dominieren. "Vermutlich, weil sie besser mit den extremen Bedingungen dort - hoher Druck, kein Sauerstoff, geringes Nährstoffangebot - zurecht kommen", sagt Prof. Hinrichs.

Archaeen bilden neben Bakterien eine von drei Grundkategorien, in die Lebewesen eingeteilt werden. Unterschieden werden die drei Gruppen u.a. an Hand von fettartigen Zellwandbausteinen, den so genannten Lipiden, nach denen das Team in den Meeresablagerungen suchte.

Aktuelle Schätzungen, wie viel mikrobielle Biomasse weltweit im Meeresboden vorhanden ist, schwanken zwischen 60 und 300 Milliarden Tonnen Kohlenstoff. "Auf der Grundlage unserer auf unabhängigen Messungen resultierenden Abschätzungen kommen wir auf rund 90 Milliarden Tonnen Kohlenstoff; ein Betrag, der genau in diesem Bereich liegt", sagt Prof. Kai-Uwe Hinrichs, Leiter der Arbeitsgruppe Organische Geochemie im Bremer Fachbereich Geowissenschaften und MARUM.

Harvard-Professorin Ann Pearson weist darauf hin, dass beinahe jeder Studie der noch jungen Wissenschaft von der tiefen Biosphäre unterschiedliche Methoden zugrunde liegen. Dies wirke sich auf die Befunde aus. So sei nicht immer klar definiert, welche Zellen als lebend oder nicht lebend gezählt werden sollten. Dies erkläre die höchst unterschiedlichen Mengenangaben von Archaeen und Bakterien wenigstens zum Teil.

Weil die Analysemethoden stark schwanken, hat Prof. Hinrichs ein internationales Ring-Experiment initiiert. Wissenschaftler in deutschen, europäischen, US-amerikanischen und japanischen Labors untersuchen derzeit einheitliches Probenmaterial aus dem Meeresboden mit unterschiedlichen Methoden. Zudem wollen sie herausfinden, ob gleiche Methoden in unterschiedlichen Labors möglicherweise zu abweichenden Ergebnissen führen. Ziel ist es, ein verlässlicheres Bild vom Leben in der tiefen Biosphäre zu gewinnen. Auf einem Workshop, der im kommenden September am Bremer MARUM stattfindet, werden die Befunde vorgestellt und diskutiert. "Damit bringen wir vermutlich ein bisschen mehr Licht in das Dunkel der tiefen Biosphäre", hofft Prof. Kai-Uwe Hinrichs.

Weitere Informationen/Interviewanfragen/Bildmaterial:
Yasmin Khalil
MARUM-Öffentlichkeitsarbeit
Tel. 0421 - 218-65541
Email: ykhalil@marum.de
http://www.marum.de
Prof. Kai-Uwe Hinrichs
MARUM - Organische Geochemie
Tel. 0421 - 218-65700
Email: khinrichs@uni-bremen.de
Das MARUM entschlüsselt mit modernsten Methoden und eingebunden in internationale Projekte die Rolle des Ozeans im System Erde -
insbesondere im Hinblick auf den globalen Wandel.

Es erfasst die Wechselwirkungen zwischen geologischen und biologischen Prozessen im Meer und liefert Beiträge für eine nachhaltige Nutzung der Ozeane.

Das MARUM umfasst das DFG-Forschungszentrum und Exzellenzcluster "Der Ozean im System Erde".

Yasmin Khalil | idw
Weitere Informationen:
http://www.marum.de

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Der Salzwasser-Wächter auf der Darßer Schwelle
19.09.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

Junge Physiologen Tagen in Jena

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

25.09.2017 | Messenachrichten

Fraunhofer ISE steigert Weltrekord für multikristalline Siliciumsolarzelle auf 22,3 Prozent

25.09.2017 | Energie und Elektrotechnik

Die Parkinson-Krankheit verstehen – und stoppen: aktuelle Fortschritte

25.09.2017 | Medizin Gesundheit