Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eine neue Zeitmessung für Gesteine

08.02.2012
ErdwissenschafterInnen stehen vor der Herausforderung, Gesteinsschichten genauen Zeiten zuzuordnen.
Michael Wagreich vom Department für Geodynamik und Sedimentologie und Johann Hohenegger vom Institut für Paläontologie der Universität Wien haben an Gesteinsschichten des Wiener Beckens eine Untersuchungsmethode erweitert, vergangene Ereignisse der Erdgeschichte mithilfe von astronomischen Zyklen zu datieren. Die Ergebnisse sind kürzlich im "International Journal of Earth Sciences" publiziert worden.

Seit dem 19. Jahrhundert sind im Wiener Becken Gesteinsabfolgen des Neogens (Jungtertiär) untersucht worden, das vor rund 23 Millionen Jahren begann und vor etwa 2,6 Millionen Jahren endete. Häufig besuchte Fundstellen in der Gegend haben dazu geführt, dass eine regionale Stufe der Erdzeitaltergliederung als Badenium bezeichnet wird; deren typische Gesteinsabfolge in der heute verfüllten Ziegelei Baden/Sooß zugänglich war. Die genaue Datierung ist allerdings ein großes Problem, da kaum direkte Alterbestimmungsmethoden anwendbar sind – wie durch radioaktiven Zerfall datierbare vulkanische Kristalle.

Änderungen der Erdbahnparameter herangezogen

Wissenschafter der Universität Wien haben eine neue Methode zur Datierung dieser mehr als 13 Millionen Jahre alten Sedimentschichten angewandt. Erdbahnparameter wie Exzentrizität (Variation der Ellipsenform der Erdumlaufbahn um die Sonne), Schiefe (Änderung des Neigungswinkels der Erdachse) und Präzession (Kreiselbewegung der Erdrotationsachse) ändern sich periodisch im Laufe von mehreren 10.000 bis 100.000 Jahren. "Diese Änderungen der Erdbahnparameter wirken sich durch Änderungen der Sonneneinstrahlung direkt und langfristig auf das Klima der Erde aus und haben nicht nur die jüngsten Eiszeiten gesteuert, sondern beeinflussten generell das Klima der Vergangenheit", sagt Michael Wagreich vom Department für Geodynamik und Sedimentologie der Universität Wien.

Sedimentarchive genau datiert
Mithilfe der hochauflösenden Messung klimasensitiver Gesteinsparameter wie Karbonatgehalt, organischer Kohlenstoffgehalt oder magnetischer Gesteinseigenschaften können in möglichst kompletten Sedimentabfolgen diese Klimazyklen rekonstruiert werden. "Im Vergleich mit der rückgerechneten theoretischen Erdeinstrahlungskurve auf der Basis der periodischen Schwankungen der Erdbahnparameter können Sedimentarchive der Erdgeschichte damit mit einer Genauigkeit datiert werden, die vorher nicht möglich war", erklärt Wagreich.
"Kritisch ist dabei eine möglichst genaue statistische Korrelation der Messergebnisse mit der Intensität der Sonneneinstrahlung", stellt Johann Hohenegger vom Institut für Paläontologie der Universität Wien und Erstautor der Studie fest. "Wir haben neue Regressions- und Korrelationsmethoden angewandt, mit denen Übereinstimmungen der Kurven herausgefiltert und deren statistische Signifikanz überprüft wurden".

Proben aus späterer Mülldeponie

Um möglichst komplette und unverwitterte Proben des Zeitabschnittes des Badeniums zu erhalten, wurde im Rahmen eines FWF-Projektes eine 102 Meter tiefe Bohrung nahe der Ziegelgrube von Sooß bei Baden unternommen. Weiters zogen die Forscher vorhandene Gesteinsproben heran, die vom Gestein vor der Auffüllung der früheren Ziegelgrube als Mülldeponie in den 1990er-Jahren genommen wurden. "Ohne diese vor Jahren genommenen und archivierten Proben hätten wir nie eine derartige Genauigkeit der Zeiteinstufung für das Badenium erhalten", sagt Michael Wagreich.

700.000 Jahre Unterschied

Das kombinierte Ergebnis dieser Datierungen von Bohrkernmaterial und alten Feldproben ändert die regionale Zeiteinteilung erheblich: War man früher von einem Alter der fraglichen Sedimentschichten von etwa 15 bis 14,5 Millionen Jahren ausgegangen, lässt sich die untersuchte Schichtabfolge jetzt auf 14,221 bis 13,964 Millionen Jahre eingrenzen, ein Unterschied von nahezu 700.000 Jahren. "Diese Ergebnisse haben nicht nur Auswirkungen auf weite Bereiche des Wiener Beckens bis hin zur Einstufung von Erdölreservoirs, sondern haben auch weitreichende Konsequenzen für mögliche internationale Korrelation zu fast altersgleichen Salzgesteinen in Polen und der damit neu zu überdenkenden Zeiteinteilung des Badeniums insgesamt", so die Schlussfolgerung von Michael Wagreich.
Publikation
Time calibration of sedimentary sections based on insolation cycles using combined cross-correlation: dating the gone Badenian stratotype (Middle Miocene, Paratethys, Vienna Basin, Austria) as an example (Johann Hohenegger und Michael Wagreich).
Abstract: http://www.springerlink.com/content/x1t8241707k67312/

Wissenschaftlicher Kontakt
Ao. Univ.-Prof. Dr. Michael Wagreich
stv. Leiter des Departments für Geodynamik und Sedimentologie
Universität Wien
1090 Wien, Althanstraße 14 (UZA II)
T +43-1-4277-534 65
michael.wagreich@univie.ac.at
Rückfragehinweis
Mag. Alexander Dworzak
Öffentlichkeitsarbeit
Universität Wien
1010 Wien, Dr.-Karl-Lueger-Ring 1
T +43-1-4277-175 31
M +43-664-602 77-175 31
alexander.dworzak@univie.ac.at

Alexander Dworzak | Universität Wien
Weitere Informationen:
http://www.univie.ac.at

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht PM des MCC: CO2-Entzug aus Atmosphäre für 1,5-Grad-Ziel unvermeidbar
22.05.2018 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

nachricht Die Ostsee als Zeitmaschine
14.05.2018 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vielseitige Nanokugeln: Forscher bauen künstliche Zellkompartimente als molekulare Werkstatt

Wie verleiht man Zellen neue Eigenschaften ohne ihren Stoffwechsel zu behindern? Ein Team der Technischen Universität München (TUM) und des Helmholtz Zentrums München veränderte Säugetierzellen so, dass sie künstliche Kompartimente bildeten, in denen räumlich abgesondert Reaktionen ablaufen konnten. Diese machten die Zellen tief im Gewebe sichtbar und mittels magnetischer Felder manipulierbar.

Prof. Gil Westmeyer, Professor für Molekulare Bildgebung an der TUM und Leiter einer Forschungsgruppe am Helmholtz Zentrum München, und sein Team haben dies...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Kosmische Ravioli und Spätzle

Die inneren Monde des Saturns sehen aus wie riesige Ravioli und Spätzle. Das enthüllten Bilder der Raumsonde Cassini. Nun konnten Forscher der Universität Bern erstmals zeigen, wie diese Monde entstanden sind. Die eigenartigen Formen sind eine natürliche Folge von Zusammenstössen zwischen kleinen Monden ähnlicher Grösse, wie Computersimulationen demonstrieren.

Als Martin Rubin, Astrophysiker an der Universität Bern, die Bilder der Saturnmonde Pan und Atlas im Internet sah, war er verblüfft. Die Nahaufnahmen der...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Raumschrott im Fokus

Das Astronomische Institut der Universität Bern (AIUB) hat sein Observatorium in Zimmerwald um zwei zusätzliche Kuppelbauten erweitert sowie eine Kuppel erneuert. Damit stehen nun sechs vollautomatisierte Teleskope zur Himmelsüberwachung zur Verfügung – insbesondere zur Detektion und Katalogisierung von Raumschrott. Unter dem Namen «Swiss Optical Ground Station and Geodynamics Observatory» erhält die Forschungsstation damit eine noch grössere internationale Bedeutung.

Am Nachmittag des 10. Februars 2009 stiess über Sibirien in einer Höhe von rund 800 Kilometern der aktive Telefoniesatellit Iridium 33 mit dem ausgedienten...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vielseitige Nanokugeln: Forscher bauen künstliche Zellkompartimente als molekulare Werkstatt

22.05.2018 | Biowissenschaften Chemie

Mikroskopie der Zukunft

22.05.2018 | Medizintechnik

Designerzellen: Künstliches Enzym kann Genschalter betätigen

22.05.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics